
ALTIMA Company, MACNICA, Inc

Intel ® SoC FPGA
All-in-One Bare Metal Application

Sample

Ver.22.1

March 2023 Rev. 4

Intel ® SoC FPGA All-in-One Bare Metal Application Sample

Ver.22.1 / Rev.4 March 2023 Rev. 4 2 / 5 5 A LT I M A C o m p a ny, M A C N I C A , I n c .

Contents

Before You Read This Document .. 4

1. Introduction .. 5

2. Benefits of Using This Sample ... 5

3. Usage environment ... 6

3-1. Development environment ... 6

3-2. Supported target boards ... 7

4. How to use this sample ... 7

4-1. Connecting the Target Board ... 7

4-2. Starting Arm DS and Importing Sample Programs .. 8

4-2-1. Starting Embedded Command Shell (SoC EDS) .. 9

4-2-2. Start Arm DS... 10

4-3. Import Bare Metal Sample Application ... 11

4-4. Set Compilation ... 13

4-5. Building the Bare Metal Sample Application .. 13

4-5-1. Building the Project .. 14

4-5-2. Bare Metal Sample Application Project File Configuration .. 15

4-6. FPGA Configuration .. 16

4-6-1. How to Download the FPGA Design File to the Target Board .. 16

4-7. Bare Metal Sample Application Debugging .. 20

4-7-1. Performing Debugging .. 20

5. Basic Operation of This Sample ... 26

5-1. Switch Mode.. 26

5-2. Command Mode .. 26

6. Description of the sample's main routine source code .. 27

7. Introduction to useful utility functions .. 30

8. What is HWLib (Hardware Library)? ... 32

8-1. HWLib Components .. 32

8-2. HWLib configuration (features with API) ... 33

8-3. HWLib documentation .. 33

Intel ® SoC FPGA All-in-One Bare Metal Application Sample

Ver.22.1 / Rev.4 March 2023 Rev. 4 3 / 5 5 A LT I M A C o m p a ny, M A C N I C A , I n c .

9. HWLib Examples ... 34

9-1. sample_cache_manage.c (cache management sample program).. 36

9-2. sample_clock_manager.c (clock manager sample program) .. 37

9-3. sample_dma_mem.c (DMA transfer sample program) .. 38

9-4. sample_dmac.c (sample program using HPS DMA (DMA -330)) ... 39

9-5. sample_ecc.c (ECC administration sample program) .. 40

9-6. sample_globaltmr.c (global timer sample program)... 41

9-7. sample_gpio.c (GPIO sample program) ... 42

9-8. sample_gptmr.c (sample general-purpose timer program) ... 43

9-9. sample_interruptctrlSGI.c (sample interrupt controller (mainly SGI) program) .. 44

9-10. sample_time_measurement.c (sample time measurement implementation program) .. 46

9-11. sample_watchdog.c (watchdog timer sample program) ... 47

10. Supplement ... 48

10-1. How to add user commands to be executed in Command mode .. 48

10-2. Directory/file structure of this sample ... 50

10-2-1. ALT-HWLib-All-In-One_v22.1_r○.○ directory (TOP directory of the project) .. 50

10-2-2. examples directory .. 51

10-2-3. linkerscripts directory ... 52

10-2-4. registers/soc_a10 directory ... 52

10-2-5. registers/soc_cv_av directory .. 52

10-2-6. target_board/a10socdk directory ... 52

10-2-7. target_board/atlas directory ... 53

10-2-8. target_board/c5socdk directory ... 53

10-2-9. target_board/de10nano directory ... 53

10-2-10. target_board/sodia directory .. 54

10-2-11. util directory .. 54

Revision History.. 55

Intel ® SoC FPGA All-in-One Bare Metal Application Sample

Ver.22.1 / Rev.4 March 2023 Rev. 4 4 / 5 5 A LT I M A C o m p a n y, M A C N I C A , I n c .

Before You Read This Manual

The contents of this manual are current as of March 2023.

Some of the software, hardware, and operating procedures described in this manual are common even if they are not specified versions or devices, but

some of them may not be common.

Symbols in documents

 Note Provides supplementary information.

 Point Provides important points.

 Reference Provides reference materials and sites for better understanding.

 Note This document contains information that is not discussed in detail, but that is necessary.

 Prohibited Notes and what not to do are described.

Notations in sentences

Underline Click to jump to another chapter in the manual or to an external site.

Bold italics Indicates characters displayed in menus, windows, etc. when operating on the screen.

xxxxxxx↵ Indicates the command string to be entered.

Shaded Indicates the tool to be used.

Intel ® SoC FPGA All-in-One Bare Metal Application Sample

Ver.22.1 / Rev.4 March 2023 Rev. 4 5 / 5 5 A LT I M A C o m p a n y, M A C N I C A , I n c .

 Introduction

This sample can be used as a starting point for building bare metal applications for Intel ® SoC FPGAs.

Because the hardware libraries (HWLib) and other code required for bare metal development are pre-placed and built into the project, users can

simply include the required header files and use the APIs without editing the Makefile.

Also, unused APIs are excluded at the time of linking and do not affect the code size.

This document describes the following:

⚫ Applicability Requirements (Supported versions, supported boards)

⚫ Benefits of using this sample

⚫ Sample Directory/File Structure

⚫ Compilation Settings

⚫ Sample Basic Behavior

⚫ How to add commands

⚫ Description of the main routine source code for this sample

⚫ Introduction to useful utility functions

⚫ What is HWLib (Hardware Library)?

⚫ HWLib Examples

 Advantages of Using this Sample

In a typical bare metal sample application, only the HWLib for the interface is used. To use other HWLibs, the Makefile must be modified to specify

additional HWLib sources.

Since it is provided in the Makefile project, any source files added by the user must also be added to the Makefile, which takes time to understand if

you are not familiar with the Intel SoC FPGA software development flow.

In this sample, all the sources provided as HWLib are registered and all the APIs can be used by including the HWLib header files you want to use.

Also, all the source files added to the TOP directory of the project are included for compilation, so you can start various evaluations basically without

modifying the Makefile.

Intel ® SoC FPGA All-in-One Bare Metal Application Sample

Ver.22.1 / Rev.4 March 2023 Rev. 4 6 / 5 5 A LT I M A C o m p a n y, M A C N I C A , I n c .

 Usage environment

 Development environment

The following table shows the main development environments used in this manual.

Table 1 Main environments used in this manual

Section

No.

Item Description

1 Host PC 64 bit machine with Microsoft® Windows® 10 (64 bit)

This document has been tested using Windows® 10.

2 Intel ® Quartus® Prime

Standard Edition

Development

Software (Since

Quartus Prime)

A tool for developing SoC FPGA hardware.

This document uses Quartus Prime Standard Edition Development Software version 22.1.

■ Quartus Prime Standard Edition version 22.1

 Note: Device data for the SoC FPGA installed on the target board must be installed.

For information on installing Quartus Prime, refer to the following site:

Quartus® Prime & ModelSim® Installation Instructions

 Note: In this document, only the Quartus Prime Programmer is used to download hardware designs "4-6. FPGA Configuration" to the FPGA.

3 Arm® Development

Studio Intel® SoC

FPGA Edition (Arm

DS)/Intel ® SoC FPGA

Embedded

Development Suite

Standard Edition

(SoC EDS)

Tools for developing SoC FPGA software.

Arm DS replaces Arm® Development Studio 5 Intel® SoC FPGA Edition (hereinafter DS-5) and provides similar functionality. You can use Arm DS

to compile and debug application software.

 Point: The final version of SoC EDS was version 20.1. Since then, the software has been unpackaged and the required files, such as the

HWLib and gcc compilers, are available separately from the Web. You can use this version of the sample project without installing SoC EDS.

 Note: If you do not want to install SoC EDS, set up the Linaro gcc compiler 7.2.0 using the instructions on the following page.

Hardware Library (HWLibs) | Documentation | RocketBoards.org

This document uses SoC EDS Standard Edition version 20.1.

■ SoC EDS Standard Edition version 20.1

 Point: For more information on installing SoC EDS and Arm DS:

How to install the SoC EDS Embedded Development Suite (SoC EDS)

 Note: To debug bare-metal applications using the Intel ® FPGA Download Cable II (USB-BlasterTM II and later), Arm DS/DS-5 Intel® SoC FPGA

Edition (Paid) is required.

 Note: This version of the sample project assumes the use of Arm DS. If you want to use the DS-5, use an older version of the sample project.

4 Terminal Emulation

Software

Serial terminal software is required to use this sample.

This document uses freeware software called "Tera Term."

■ Tera Term Download URL

 Note: In Tera Term, make the following settings for the valid COM port when connected to the target board's UART.

・Baud rate 115200 bps, 8 bit data, no parity, 1 stop bit, no flow control

https://www.intel.com/content/www/us/en/software-kit/757236/intel-quartus-prime-standard-edition-design-software-version-22-1-for-windows.html?
https://www.macnica.co.jp/business/semiconductor/articles/intel/133841/
https://www.macnica.co.jp/business/semiconductor/articles/intel/133841/
https://www.rocketboards.org/foswiki/Documentation/HWLib
https://fpgasoftware.intel.com/soceds/20.1/?edition=standard&download_manager=direct&platform=windows
https://fpgasoftware.intel.com/soceds/20.1/?edition=standard&download_manager=direct&platform=windows
https://www.macnica.co.jp/business/semiconductor/articles/intel/133844/
https://forest.watch.impress.co.jp/library/software/utf8teraterm/

Intel ® SoC FPGA All-in-One Bare Metal Application Sample

Ver.22.1 / Rev.4 March 2023 Rev. 4 7 / 5 5 A LT I M A C o m p a n y, M A C N I C A , I n c .

 Supported target boards

In this sample, the following target boards can be specified in TARGET_BOARD in the config.mk file.

Table 3 Supported Target Boards for This Sample

Section

No
Target Board

1 Cyclone® V SoC Development Kit

2 Intel ® Arria® 10 SoC Development Kit

3 Helio-Cyclone ® V SoC Kit (no longer available)

4 Sodia-Cyclone ® V ST SoC Evaluation Board

5 DE0-Nano-SoC Kit/Atlas-SoC Kit (no longer available)

6 DE10-Nano Kit

 How to use the sample

 Connecting the target board

The following is an overview of the target board connections.

Connect the AC adapter and cables as follows:

Host PC

Target Board

USB

USB

USB Blaster II

USB-UART DC Power

AC 100V

Figure 4 Connecting the target board

 Note:

This version of the sample project does not contain data for Helio boards.

If you want to use it with Helio, use the previous version of the sample project.

https://www.intel.co.jp/content/www/jp/ja/programmable/products/boards_and_kits/dev-kits/altera/kit-cyclone-v-soc.html
https://www.intel.co.jp/content/www/jp/ja/programmable/products/boards_and_kits/dev-kits/altera/arria-10-soc-development-kit.html
https://service.macnica.co.jp/catalog/121173
https://service.macnica.co.jp/catalog/121189
http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&No=941
http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&No=1046

Intel ® SoC FPGA All-in-One Bare Metal Application Sample

Ver.22.1 / Rev.4 March 2023 Rev. 4 8 / 5 5 A LT I M A C o m p a n y, M A C N I C A , I n c .

⚫ Connect the power (AC adapter) to the DC input connector on the target board.

⚫ Use a USB cable to connect the host PC to the on-board USB-BlasterTM II connector on the target board.

⚫ Use a USB cable to connect the host PC to the USB-UART connector on the target board.

 Start Arm DS and import sample programs

Start Arm DS and import sample ALT-HWLib-All-In-One_v22.1_r○.○.tgz.

To automatically configure the SoC EDS, start Arm DS from the following embedded command shell:

 Note:

If you do not want to install SoC EDS, add the PATH of the compiler tool chain to the environment variable. If you do not want to change the PATH

information in the Windows environment variable, you can write it in the .ini file for Arm DS (The .ini setting is not described in the Arm DS manual, so

use it at your own risk.).

➢ Additional PATH information: "C:¥msys64 ¥home¥ ¥intel-socfpga-hwlib¥tools¥gcc¥bin"

The following is an example of adding the PATH information of the compiler tool chain to the .ini file for Arm DS (C: ¥Users¥ ¥AppData¥Roaming¥arm¥ds¥2022.2¥env.ini).

Here is an example of adding PATH information for the compiler toolchain (in bold blue):

Listing 4: Example of .ini

 Note:

When using a Sodia board, a separate USB-BlasterTM II cable is required to configure the FPGA (Writing a .sof File) and debug/run bare metal

applications.

https://www.mouser.jp/ProductDetail/Intel-Altera/PL-USB2-

BLASTER?qs=%2fha2pyFaduiRriBk7xhIgC3%2fgy%2faENSICIUHybT1yeHhqUx7xdgjQg==&_ga=2.221605659.284231058.154

7025155-2070048929.1547025155

SET=ARM_PRODUCT_DEF=C:¥Program Files¥Arm¥Development Studio 2022.2¥sw¥mappings¥intel_fpga.elmap

SET=PATH=%PATH%; C:¥msys64¥usr¥bin; C:¥msys64¥home ¥username ¥intel-sofpga-hwlib ¥tools¥gcc¥bin; C:¥Program

Files¥Arm¥Development Studio 2022.2¥sw¥ARMCompiler6.19¥bin;

https://www.mouser.jp/ProductDetail/Intel-Altera/PL-USB2-BLASTER?qs=%2fha2pyFaduiRriBk7xhIgC3%2fgy%2faENSICIUHybT1yeHhqUx7xdgjQg==&_ga=2.221605659.284231058.1547025155-2070048929.1547025155
https://www.mouser.jp/ProductDetail/Intel-Altera/PL-USB2-BLASTER?qs=%2fha2pyFaduiRriBk7xhIgC3%2fgy%2faENSICIUHybT1yeHhqUx7xdgjQg==&_ga=2.221605659.284231058.1547025155-2070048929.1547025155
https://www.mouser.jp/ProductDetail/Intel-Altera/PL-USB2-BLASTER?qs=%2fha2pyFaduiRriBk7xhIgC3%2fgy%2faENSICIUHybT1yeHhqUx7xdgjQg==&_ga=2.221605659.284231058.1547025155-2070048929.1547025155

Intel ® SoC FPGA All-in-One Bare Metal Application Sample

Ver.22.1 / Rev.4 March 2023 Rev. 4 9 / 5 5 A LT I M A C o m p a n y, M A C N I C A , I n c .

4-2-1. Launch Embedded Command Shell (SoC EDS)

Run the startup script stored in the Windows Start menu or the SoC EDS installation folder (embedded folder) to start the Embedded Command

Shell.

Figure 1 Launch Embedded Command Shell

or
Double-click

Intel ® SoC FPGA All-in-One Bare Metal Application Sample

Ver.22.1 / Rev.4 March 2023 Rev. 4 1 0 / 5 5 A LT I M A C o m p a n y, M A C N I C A , I n c .

4-2-2. Starting Arm DS

____ 1. If you are using SoC EDS, when the Embedded Command Shell window opens, enter the following commands (1) - (3) to start

Arm DS.

① $ /cygdrive/c/Program ¥Files/Arm/Development ¥Studio ¥2022.2/bin/cmdsuite.exe

*The 2022.2 part varies depending on the version of Arm DS.

② $ bash

③ $ armds_ide &

____ 2. If you are not using SoC EDS, start Arm DS IDE 2022.2 from the Windows Start menu.

※ The 2022.2 part varies depending on the version of Arm DS.

 Note: To start with this step, you must have previously set the compiler toolchain PATH information.

(Review the note on the previous page again).

____ 3. You will be prompted for a workspace folder. Select or create a unique workspace for your software project.

Figure 2: Starting Arm DS

Figure 3 Specifying a Workspace for Arm DS

$ /cygdrive/c/Program ¥Files/Arm/Development ¥Studio ¥2022.2/bin/cmdsuite.exe

$ bash

$ armds_ide &

Intel ® SoC FPGA All-in-One Bare Metal Application Sample

Ver.22.1 / Rev.4 March 2023 Rev. 4 1 1 / 5 5 A LT I M A C o m p a n y, M A C N I C A , I n c .

____ 4. If the Arm DS Welcome screen appears, click Close (X).

Note that it may take some time to close by pressing the X.

The Welcome screen can be used to access documentation, tutorials, and videos.

 Import Bare Metal Sample Application

Import the Bare Metal Sample Application ALT-HWLib-All-In-One_v22.1_r○.○ into Arm DS.

____ 1. From the DS menu, select File > Import....

____ 2. Select General > Existing Projects into Workspace and click Next >.

Figure 4: Arm DS Welcome screen

Figure 5 Importing Existing Projects

Intel ® SoC FPGA All-in-One Bare Metal Application Sample

Ver.22.1 / Rev.4 March 2023 Rev. 4 1 2 / 5 5 A LT I M A C o m p a n y, M A C N I C A , I n c .

____ 3. Select the "Select archive file:" option. Use the "Browse ..." button to locate the following sample projects: ALT-HWLib-All-In-

One_v22.1_r○.○.tgz Select and press the "Finish" button.

____ 4. The imported bare metal sample application project ALT-HWLib-All-In-One_v22.1_r○.○ has been added to the Project Explorer panel on the

left side of the Arm DS screen. Expand ALT-HWLib-All-In-One_v22.1_r○.○ to see the various files contained in the project.

Figure 6 Adding the Sample Application

Intel ® SoC FPGA All-in-One Bare Metal Application Sample

Ver.22.1 / Rev.4 March 2023 Rev. 4 1 3 / 5 5 A LT I M A C o m p a n y, M A C N I C A , I n c .

 Compilation Settings

In this sample, you can specify the compiler to use, the target board, and whether to use semi-hosting in the config.mk file.

The default settings are ARM compiler, UART output (non-semi-hosting), generate system header files, and atlas board.

Also, when using DMA-related samples (sample_dma_mem.c/sample_dmac.c), build with USED_DMA set to 1. If not, build with USED_DMA set

to 0.

[Listing 1] Compilation settings in the config.mk file4

 Building the Bare Metal Sample Application

The next step is to build and run the imported Bare Metal Sample Application project.

###################

Target App Name #

###################

TARGET := sample_app

######################################

Select Compiler < Support GNU only #

######################################

COMPILER := GNU

#COMPILER := ARM

Select printf target (0:Semihost/1:UART) #

SEMIHOSTED := 1

Generate system header file from sopcinfo (0:No/1:Yes) #

GEN_SYS_HEADER := 1

#######################

Select Target Board #

#######################

TARGET_BOARD := atlas

#TARGET_BOARD := sodia

#TARGET_BOARD := c5socdk

#TARGET_BOARD := a10socdk

#TARGET_BOARD := de10nano

################################

USE DMA sample (0:No/1:Yes)#

################################

USED_DMA := 0

Select example code to test (0:Disable/1:Enable) #

ENABLE_EXAMPLE_DMA : sample_dmac.c,sample_dma_mem.c (USED_DMA must be 1)

ENABLE_EXAMPLE_DMA := 0

ENABLE_EXAMPLE_CACHE : sample_cache_manage.c

ENABLE_EXAMPLE_CACHE := 0

Compiler specification: GCC/ARMCC

printf Output specification: 0= semi-hosting/1=UART

System header file generation: 0= do not generate/1= generate

⚠ Note: Use pre-generated header files in a Windows environment. (If you want to regenerate it, run the

command in the Nios II Command Shell.)

Target board specification:

 ・ atlas

 ・ sodia

 ・ c5socdk

 ・ a10socdk

 ・ de10nano

Use DMA related samples

(sample_dma_mem.c/sample_dmac.c):

0 = Do not use

1 = Use

Enabling the Example programs:

0 = Disable

1 = Enable

Intel ® SoC FPGA All-in-One Bare Metal Application Sample

Ver.22.1 / Rev.4 March 2023 Rev. 4 1 4 / 5 5 A LT I M A C o m p a n y, M A C N I C A , I n c .

4-5-1. Building the Project

Highlight the bare metal sample application project ALT-HWLib-All-In-One_v22.1_r○.○ and right-click to run Build Project.

When the build completes, a bare metal application .axf file is generated.

Figure 7 Building the Project

Right-click with mouse

Intel ® SoC FPGA All-in-One Bare Metal Application Sample

Ver.22.1 / Rev.4 March 2023 Rev. 4 1 5 / 5 5 A LT I M A C o m p a n y, M A C N I C A , I n c .

4-5-2. Bare Metal Sample Application Project File Configuration

The following figure shows the file configuration of the sample application.

⚫ sample_app.axf is the sample application executable.

⚫ u-boot-spl.axf is the Preloader executable.

Figure 8 Sample Application File Configuration

After Build Before Build

Intel ® SoC FPGA All-in-One Bare Metal Application Sample

Ver.22.1 / Rev.4 March 2023 Rev. 4 1 6 / 5 5 A LT I M A C o m p a n y, M A C N I C A , I n c .

 FPGA Configuration

Next, configure the FPGA by programming a hardware design file with the extension .sof to the SoC FPGA.

4-6-1. How to Download the FPGA Design File to the Target Board

Download the hardware design (sof file) to the FPGA.

Refer to "4-1Connecting the target board" section to confirm that the board connection is complete. If there are no problems with the setup, connect

the AC adapter to the board and turn on the power.

____ 1. From the Quartus Prime menu, click "Tools" ⇒ "Programmer" or click the Programmer icon to start Programmer.

____ 2. Click the [Hardware Setup] button in Programmer, select the programming hardware from the Currently selected hardware pull-down list

in the Hardware Setup window, and close the window.

 Note:

Since the Atlas-SoC board is used as an example in this manual, DE-SoC is selected as the programming hardware as shown below.

Select the programming hardware shown in the table below according to your target board.

[Table 4] Programming hardware corresponding to the target board

No. Target Board Programming Hardware

1 Cyclone® V SoC Development Kit USB-BlasterII [USB-x]

2 Intel ® Arria® 10 SoC Development Kit USB-BlasterII [USB-x]

3 Sodia-Cyclone ® V ST SoC Evaluation Board USB-BlasterII [USB-x]

4 DE0-Nano-SoC Board/Atlas-SoC Board DE-SoC [USB-x]

5 DE10-Nano Board DE-SoC [USB-x]

[Figure 9] Hardware Setup

Intel ® SoC FPGA All-in-One Bare Metal Application Sample

Ver.22.1 / Rev.4 March 2023 Rev. 4 1 7 / 5 5 A LT I M A C o m p a n y, M A C N I C A , I n c .

____ 3. Click the [Auto Detect] button to detect the FPGA connected to the JTAG chain on the board.

____ 4. Select the device installed on the target board from the Select Device window and click.

 Note:

In this manual, the Atlas-SoC board is used as an example, so 5CSEMA4 is selected as the device as shown below.

Select the device shown in the table below according to your target board.

[Table 4] Devices corresponding to the target board

Section

No.
Target board Device

1 Cyclone® V SoC Development Kit 5CSXFC6

2 Intel ® Arria® 10 SoC Development Kit 10AS066N3

3 Sodia-Cyclone ® V ST SoC Evaluation Board 5CSTFD6

4 DE0-Nano-SoC Board/Atlas-SoC Board 5CSEMA4

5 DE10-Nano Board 5CSEBA6

____ 5. If the following dialog box appears, select Yes.

This displays SOCVHPS and 5CSMA4 on the JTAG chain. SOCVHPS indicates that the HPS side has been recognized, and 5CSMA4 indicates that the

FPGA side has been recognized.

Figure 411 Dialog Box

Figure 410 Device Selection (Atlas-SoC Board Example)

Intel ® SoC FPGA All-in-One Bare Metal Application Sample

Ver.22.1 / Rev.4 March 2023 Rev. 4 1 8 / 5 5 A LT I M A C o m p a n y, M A C N I C A , I n c .

____ 6. Select the file you want to download.

5 Right-click on CSEMA4 in the Device field and click Change File.

In the Select New Programming File dialog box, select the .sof file corresponding to the target board.

 Note:

The .sof file corresponding to each target board is located under the target_board directory of this sample project.

Select the .sof file according to the target board you are using.

Table 4 .sof file corresponding to the target board

Section

No.
Target board .sof file

1 Cyclone® V SoC Development Kit c5socdk¥soc_system.sof

2 Intel ® Arria® 10 SoC Development Kit a10socdk¥ghrd_10as066n2.sof

3 Sodia-Cyclone ® V ST SoC Evaluation Board sodia¥soc_system.sof

4 DE0-Nano-SoC board/Atlas-SoC board atlas¥soc_system.sof

5 DE10-Nano board de10nano¥soc_system.sof

Figure 412 Selecting the sof file (Atlas-SoC board example)

Right click with mouse

Intel ® SoC FPGA All-in-One Bare Metal Application Sample

Ver.22.1 / Rev.4 March 2023 Rev. 4 1 9 / 5 5 A LT I M A C o m p a n y, M A C N I C A , I n c .

____ 7. Check "Program/Configure" and click the [Start] button to complete the configuration. This operation causes the operational image to be

written to the FPGA.

Figure 413: Download sof (Atlas-SoC board example)

Intel ® SoC FPGA All-in-One Bare Metal Application Sample

Ver.22.1 / Rev.4 March 2023 Rev. 4 2 0 / 5 5 A LT I M A C o m p a n y, M A C N I C A , I n c .

 Debugging the Bare Metal Sample Application

The next step is to debug the Bare Metal sample application that you built.

Before debugging, refer to section 4-1 Connecting the target board and make sure that the cabling between the host PC and the target board and the

power on the target board are complete.

Also, start the serial terminal (Tera Term is used in this document) and make the following settings for the valid COM port that is connected to the

UART on the target board to enable terminal I/O.

 Baud rate 115200 bps

 8 bit data

 No parity

 1 stop bit

 No flow control

4-7-1. Run debugging

____ 1. Highlight the bare metal sample application project ALT-HWLib-All-In-One_v22.1_r○.○, right click and select Debug As > Debug

Configurations....

Figure 414 Debug As > Debug Configurations...

Right mouse click

Intel ® SoC FPGA All-in-One Bare Metal Application Sample

Ver.22.1 / Rev.4 March 2023 Rev. 4 2 1 / 5 5 A LT I M A C o m p a n y, M A C N I C A , I n c .

____ 2. From the left panel of the Debug Configuration window, click

Generic ARM C/C++ Application > GNU-Debug-<device>-All-In-One-Sample (If not, click the (+) next to Generic ARM C/C++

Application).

 Note:

In this manual, the Atlas-SoC board is used as an example. The debug configuration is set to "General ARM C/C++ Application" ⇒ "GNU-

Debug-CV-All-In-One-Sample" as shown below.

The debug configuration is set to "Intel SoC FPGA" ⇒ "Cyclone V SoC (Dual Core)" ⇒ "Bare Metal Debug" ⇒ "Debug Cortex-A9_ 0" using a

USB-BlasterTM II as the target connection.

Select the debug configuration shown in the table below according to your target board.

[Table 2] Debug configuration according to the target board

No. Target board Debug configuration

1 Intel ® Arria® 10 SoC Development Kit GNU-Debug-A10-All-In-One-Sample

2 Cyclone® V SoC Development Kit

GNU-Debug-CV-All-In-One-Sample
3 Sodia-Cyclone ® V ST SoC Evaluation Board

4 DE0-Nano-SoC Board/Atlas-SoC Board

5 DE10-Nano Board

____ 3. Press the Browse ... button on the right side of the connection section to display the selection screen for the USB-BlasterTM connection.

Figure 415: Debug Configuration

Intel ® SoC FPGA All-in-One Bare Metal Application Sample

Ver.22.1 / Rev.4 March 2023 Rev. 4 2 2 / 5 5 A LT I M A C o m p a n y, M A C N I C A , I n c .

____ 4. In the connection browser window, highlight the desired target connection and click Select.

 Note:

In this document, the Atlas-SoC board is used as an example, so DE-SoC on localhost is selected as the target connection as shown below.

Select the target connection from the table below according to your target board.

[Table 3] Target connection corresponding to the target board

No. Target Board Target Connection

1 Cyclone® V SoC Development Kit USB-BlasterII on localhost

2 Intel ® Arria® 10 SoC Development Kit USB-BlasterII on localhost

3 Sodia-Cyclone ® V ST SoC Evaluation Board USB-BlasterII on localhost

4 DE0-Nano-SoC board/Atlas-SoC board DE-SoC on localhost

5 DE10-Nano board DE-SoC on localhost

____ 5. Click the Debug button at the bottom right of the Debug Configurations window.

Figure 417 Running Debugging

Figure 416 Selecting a Debug Cable

Intel ® SoC FPGA All-in-One Bare Metal Application Sample

Ver.22.1 / Rev.4 March 2023 Rev. 4 2 3 / 5 5 A LT I M A C o m p a n y, M A C N I C A , I n c .

____ 6. If prompted to confirm the perspective switch, click Yes to accept it.

If you receive a Windows Defender Firewall warning, click Allow Access.

 Note:

If you receive an error during download, check the following:

(1) Make sure the network interface (e.g. USB-Ethernet Interface Adapter) to which the Arm DS license is associated is enabled.

(2) Make sure that the evaluation board is powered off and the PC is rebooted. If the evaluation board is powered off, remember to download

the FPGA data again.

The debugger follows the instructions in the startup script to enable the semi-hosting feature and then downloads the application to the board via

JTAG. When the program counter reaches the main function, it is broken and ready to start debugging. At this stage, you can use all the debugging

features of Arm DS (View and edit registers and variables, reference disassembly code, etc.).

Figure 418 Checking the Perspective Switch

Figure 19 Security Warning

Intel ® SoC FPGA All-in-One Bare Metal Application Sample

Ver.22.1 / Rev.4 March 2023 Rev. 4 2 4 / 5 5 A LT I M A C o m p a n y, M A C N I C A , I n c .

____ 7. Green Continue button (or press F8) to run the application.

This will display the execution of the Bare Metal Sample application to a valid COM port on the Terminal (Tera Term) connected to the UART

on the target board.

Figure 420 Running/Debugging the Application

Intel ® SoC FPGA All-in-One Bare Metal Application Sample

Ver.22.1 / Rev.4 March 2023 Rev. 4 2 5 / 5 5 A LT I M A C o m p a n y, M A C N I C A , I n c .

____ 8. If the DIP switch of the target board is set to "Command mode" (described later), the command menu will be displayed in the terminal (Tera

Term) as shown below, and the command will be waiting for input.

____ 9. To finish debugging, click the Disconnect from Target button to disconnect from the CPU, and then click the Remove All Connections

button to remove the target. Click the shortcut button on the menu bar to switch back to the original C/C + + perspective.

Click the Delete button to delete the target.

____ 10. Menu bar shortcut button to switch back to the original C/C++ perspective.

Figure 421: Bare Metal Sample Application Execution in Command Mode

U-Boot SPL 2022.04 (Mar 16 2023 - 17:48:50 +0900)

MPU 800000 kHz
DDR 400000 kHz
EOSC1 25000 kHz
EOSC2 25000 kHz
F2S_SDR_REF 0 kHz
F2S_PER_REF 0 kHz
MMC 50000 kHz
QSPI 3125 kHz
UART 100000 kHz
SPI 200000 kHz
SDRAM: 1024 MiB

User Application Start!
==== PLL Lock Status Information =====
 * Main PLL Lock : 1
 * Peripheral PLL Lock : 1
 * SDRAM PLL Lock : 1
Clock Manager Interrupt Status=0x000001C7

==== Input Clock Frequency Value =====
ALT_CLK_IN_PIN_OSC1(0): Frequency= 25000000 (Hz)
ALT_CLK_IN_PIN_OSC2(1): Frequency= 25000000 (Hz)

==== Start While(1) loop process!!! ============

+-<< Usage: Command and Switch Functions >>----------------------------------+
 SLIDESW #0 Select Operation Mode (ON:Switch/OFF:Command)
< Switch Mode >

 PUSH SW #0 Exit Test loop!!!
 PUSH SW #1 Function-A
 PUSH SW #2 Function-B
 PUSH SW #3 Function-C
 SLIDESW #1:3 .. Option 0~7
< Command Mode >

 menu : Print of menu
 mr : mr <type:8/16/32> <addr(HEX)>
 mw : mw <type:8/16/32> <addr(HEX)> <data(HEX)>
 md : md <type:8/16/32> <addr(HEX)> <size(HEX)>
 mf : mf <type(0:inc/1:fixed> <data(HEX)> <addr(HEX)> <size(HEX)>
 exit : Exit
 * Note: HEX Value does not need 0x
+--+

Enter Command Mode! <Press Enter key to continue>

Command:

~ Skip ~

Enter the Enter key here

Enter the command here

Intel ® SoC FPGA All-in-One Bare Metal Application Sample

Ver.22.1 / Rev.4 March 2023 Rev. 4 2 6 / 5 5 A LT I M A C o m p a n y, M A C N I C A , I n c .

 Basic Behavior of This Sample

Depending on the bit 0 state of the DIP switch on the target board, it is possible to switch the operation to one of the following two modes for

verification:

① ON: Switch mode (check DIP switch/PUSH switch operation)

② OFF: Command mode (execution of various tests by command input)

 Switch mode

Confirms the settings of the DIP switch and PUSH switch, and outputs the setting status to a message.

 Command mode

Commands registered in COMMANDS_LIST commands[] can be executed. The following commands are registered by default.

User-created processes can also be registered as commands and executed.

Table 5. Commands Registered by Default

Command Command Line Execution function

Menu display command menu cmd_menu()

Memory read command mr <type:8/16/32> <addr(HEX)> cmd_mem_read()

Memory write command mw <type:8/16/32> <addr(HEX)> <data(HEX)> cmd_mem_write()

Memory dump command md <type:8/16/32> <addr(HEX)> <size(HEX)> cmd_mem_dump()

Memory fill command mf <type(0:inc/1:fixed> <data(HEX)> <addr(HEX)> <size(HEX)> cmd_mem_fill()

Exit command exit cmd_exit()

Figure 5: Command mode menu display by default

==== Start While(1) loop process!!! ============

+-<< Usage: Command and Switch Functions >>----------------------------------+
 SLIDESW #0 Select Operation Mode (ON:Switch/OFF:Command)
< Switch Mode >
 PUSH SW #0 Exit Test loop!!!
 PUSH SW #1 Function-A
 PUSH SW #2 Function-B
 PUSH SW #3 Function-C
 SLIDESW #1:3 .. Option 0~7
< Command Mode >
 menu : Print of menu
 mr : mr <type:8/16/32> <addr(HEX)>
 mw : mw <type:8/16/32> <addr(HEX)> <data(HEX)>
 md : md <type:8/16/32> <addr(HEX)> <size(HEX)>
 mf : mf <type(0:inc/1:fixed> <data(HEX)> <addr(HEX)> <size(HEX)>
 exit : Exit
 * Note: HEX Value does not need 0x
+--+

Enter Command Mode! <Press Enter key to continue>

Command:

Now, type Enter

Enter the command here

Intel ® SoC FPGA All-in-One Bare Metal Application Sample

Ver.22.1 / Rev.4 March 2023 Rev. 4 2 7 / 5 5 A LT I M A C o m p a n y, M A C N I C A , I n c .

 Description of the main routine source code for this sample

The following is an excerpt of the main routine for this sample (in sample_app.c).

Describes the main routine source code for this sample.

/***
 * includes
 ***/
#include <stdio.h>
#include <string.h>
#include "hwlib.h"

#include "socal/socal.h"
#include "socal/hps.h"
#include "sample_app_setting.h"

#include "util_time_measurement.h"
#include "util_interrupt_log.h"
#include "cmd.h"

/***
 * externs
 ***/
//extern void sample_dmac_initialize(void);

void sample_test_print_usage(void)
{
 printf("\n");
 printf("+-<< Usage: Command and Switch Functions >>----------------------------------+\n");
 printf(" SLIDESW #0 Select Operation Mode (ON:Switch/OFF:Command)\n");
 printf("< Switch Mode >\n");
 printf(" PUSH SW #0 Exit Test loop!!!\n");
 printf(" PUSH SW #1 Function-A\n");
 printf(" PUSH SW #2 Function-B\n");
 printf(" PUSH SW #3 Function-C\n");
 printf(" SLIDESW #1:3 .. Option 0~7\n");
 printf("< Command Mode >\n");
 cmd_menu(NULL);
 printf("+--+\n\n");

 return;
}

int main(void)
{
 //ALT_STATUS_CODE result_code;
 uint32_t switch_raw = 0;
 uint32_t switch_raw_bk = 0;
 uint32_t switch_detect = 0;
 uint32_t switch_detect_on = 0;
 uint32_t switch_number = 0;
 bool disp_usage = true;
 bool switch_mode = true;

 printf("\r\nUser Application Start!\r\n");

 // CPU and board settings.
 util_intlog_init();
#if USED_CPU0_INIT==1
 cpu0_init();
#endif

 // Initializing the dmac functions of hwlib.
 //sample_dmac_initialize();

Continued on the next page

sample_test_print_usage()

 Function to show usage of this sample test

cmd_menu()

Display command menus registered in COMMANDS_LIST commands[]

main()

 Main function for this sample

util_intlog_init() Initialization function for interrupt logging utility

cpu0_init() Initialization function for CPU0

Intel ® SoC FPGA All-in-One Bare Metal Application Sample

Ver.22.1 / Rev.4 March 2023 Rev. 4 2 8 / 5 5 A LT I M A C o m p a n y, M A C N I C A , I n c .

 /* ## */
 /* ## Implement the test setting process here!!! ## */
 /* ## */
 util_intlog_print();

 printf("==== Start While(1) loop process!!! ============\n");
 switch_raw_bk = sample_detect_switch();
 switch_raw_bk ^= SAMPLE_SWITCH_BIT_SLIDE0;
 while(1)
 {
 if(disp_usage)
 {
 sample_test_print_usage();
 disp_usage = false;
 }
 // ---- Check the Slide-Switch and Push-Switch. ----
 switch_raw = sample_detect_switch();
 switch_detect = switch_raw ^ switch_raw_bk;
 switch_detect_on |= switch_detect & switch_raw;

 // Push-Switch 0
 if((switch_detect_on & SAMPLE_SWITCH_BIT_PUSH0)
 &&(!(switch_raw & SAMPLE_SWITCH_BIT_PUSHALL)))
 {
 break; // Exit Test loop!!!
 }

 // Change operation mode ?
 if(switch_detect & SAMPLE_SWITCH_BIT_SLIDE0){
 if(switch_raw & SAMPLE_SWITCH_BIT_SLIDE0){
 printf("Enter Switch Mode!\n");
 switch_mode = true;
 } else {
 printf("Enter Command Mode! <Press Enter key to continue>\n");
 while(getchar() != '\n'); /* Clear stdin buffer */
 switch_mode = false;
 }
 }
 // ==== Branch by operation mode (Command Mode or Switch Mode) ====
 if(switch_mode){
 // ---- Switch Mode -- //

 // Slide-Switch
 if(switch_detect & SAMPLE_SWITCH_BIT_SLIDEALL)
 {
 switch_number = switch_raw & SAMPLE_SWITCH_BIT_NUM;
 switch_number *= 1; // To avoid warnings.

 if(switch_detect & SAMPLE_SWITCH_BIT_SLIDE1){
 printf("SAMPLE_SWITCH_BIT_SLIDE1\n");
 }
 if(switch_detect & SAMPLE_SWITCH_BIT_SLIDE2){
 printf("SAMPLE_SWITCH_BIT_SLIDE2\n");
 }
 if(switch_detect & SAMPLE_SWITCH_BIT_SLIDE3){
 printf("SAMPLE_SWITCH_BIT_SLIDE3\n");
 }
 }

Continued on the next page

util_intlog_print() Utility function for interrupt logging

sample_detect_switch() Function to get switch state

sample_test_print_usage() Function to show usage of this sample

sample_detect_switch() Function to get the switch state

If push switch 0 is ON,

exit the while loop of this test

If DIP switch bit 0 is ON,

put the operation into Switch mode

If DIP switch bit 0 is OFF,

put the operation into Command mode

and wait for the Enter key.

In Switch mode,

If DIP switch bit 1 is ON, a message will be displayed.

Display a message

If DIP switch bit 2 is ON,

a message will be displayed.

If DIP switch bit 3 is ON,

a message will be displayed.

Intel ® SoC FPGA All-in-One Bare Metal Application Sample

Ver.22.1 / Rev.4 March 2023 Rev. 4 2 9 / 5 5 A LT I M A C o m p a n y, M A C N I C A , I n c .

[Listing 1] Main routine source code for this sample6

 // Push-Switch
 if(!(switch_raw & SAMPLE_SWITCH_BIT_PUSHALL)){

 if(switch_detect_on & SAMPLE_SWITCH_BIT_PUSH1){
 switch_detect_on &= ~SAMPLE_SWITCH_BIT_PUSH1;
 printf("SAMPLE_SWITCH_BIT_PUSH1\n");
 disp_usage = true;
 }
 if(switch_detect_on & SAMPLE_SWITCH_BIT_PUSH2){
 switch_detect_on &= ~SAMPLE_SWITCH_BIT_PUSH2;
 printf("SAMPLE_SWITCH_BIT_PUSH2\n");
 disp_usage = true;
 }
 if(switch_detect_on & SAMPLE_SWITCH_BIT_PUSH3){
 switch_detect_on &= ~SAMPLE_SWITCH_BIT_PUSH3;
 printf("SAMPLE_SWITCH_BIT_PUSH3\n");
 disp_usage = true;
 }
 }
 } else {
 // ---- Command Mode --- //
 if(cmd_execute())
 {
 break; // Exit Test loop!!!
 }
 }

 util_intlog_print();
 switch_raw_bk = switch_raw;
 }
 printf("==== End While(1) loop process. ================\n");

 util_intlog_print();

 printf("Finished running the sample !!!\r\n");

 return 0;
}

End

If push switch 1 is turned ON,

a message is displayed.

If push switch 2 is turned ON,

a message is displayed.

If push switch 3 is turned ON,

a message is displayed.

In the Command mode,

cmd_execute() Executes command input processing.

Exits the while loop of this test when the "exit" command is entered.

util_intlog_print() Interrupt logging utility function

util_intlog_print() Interrupt logging utility function

Intel ® SoC FPGA All-in-One Bare Metal Application Sample

Ver.22.1 / Rev.4 March 2023 Rev. 4 3 0 / 5 5 A LT I M A C o m p a n y, M A C N I C A , I n c .

 Introduction to useful utility functions

The util directory contains useful utility functions.

Some typical utility functions are listed below.

[Table 1] MMU configuration utility functions7

File MMU configuration utility functions Description

l2mmu_setting.c

l2mmu_setting.h

void sample_mmu_init_and_enable (void)

Initialize and enable the MMU by doing the following

 Initialize the MMU

 Create the MMU table

 Enable MMU

int cpu0_l2mmu_init (void)

Do the following:

 Enable SIMD and VFP

 ACTLR.SMP = 1/NSACR.NS_SMP = 1

 Initialize SCU (SCU is a shared resource of MPCore)

 Set AXI transaction signal (AxUSER [0] = 1). This setting is required for coherent

forwarding with ACP

 Initialize GIC distributor register

 Set and enable MMU

 Enable Cache

 Initializes and enables CPU interrupts.

 Enables GIC global interrupts (Core0 only).

Table 7 Memory Access Utility Functions

File Memory Access Utility Functions Description

mem_util.c

mem_util.h

void sample_memset_address32 (

uint32_t* start, size_t size)
Sets the 32 bit address value in memory.

void sample_memset_incrementdata (

uint32_t* start, uint32_t testdata, size_t size)
Sets the increment data of 1 in memory.

void sample_memset_incrementdata_4byte (

uint32_t* start, uint32_t testdata, size_t size)
Sets the increment data of 4 in memory.

void sample_memdmp_word (

const uint32_t* start, size_t size)
Dump memory in 32 bit size

void sample_memdmp_halfword (

const uint16_t* start, size_t size)
Dump memory in 16 bit size

void sample_memdmp_byte (

const uint8_t* start, size_t size)
Dump memory in 8 bit size

Table 2 usleep utility functions7

File usleep utility functions Description

usleep_soc.c void usleep (uint32_t us) Inserts a specified microsecond sleep using a global timer.

Intel ® SoC FPGA All-in-One Bare Metal Application Sample

Ver.22.1 / Rev.4 March 2023 Rev. 4 3 1 / 5 5 A LT I M A C o m p a n y, M A C N I C A , I n c .

Table 3 Interrupt logging utility functions7

File Interrupt logging utility functions Description

util_interrupt_log.c

util_interrupt_log.h

void util_intlog_init (void) Interrupt log initialization processing: Always called first

void util_intlog_record (

ALT_INT_INTERRUPT_t kind, int opt1, int opt2)
Interrupt log recording processing: Called in an interrupt routine

void util_intlog_print (void) Interrupt log output processing: Called periodically in a normal routine

Table 4 Timing utility functions7

File Timing utility functions Description

util_time_measurement.c

util_time_measurement.h

void util_time_init (void)

Initializes the time measurement program

 Prints clock setting information

 Sets the global timer for measurement

 Initializes measurement recording information

void util_time_uninit (void)

Uninitializes the time measurement program

 Uninitializes the global timer for measurement

 Prints all measurement results and clears the measurement

record information

void util_time_record_start_point (uint32_t index) Records the start point of the time measurement

void util_time_record_end_point (uint32_t index) Records the end point of the time measurement

void util_time_print_result_by_counter (

uint32_t index)
Prints the measurement results on the counter (prints the heading)

void util_time_print_result_by_seconds (

uint32_t index)
Prints measurement results in seconds (print headings)

void util_time_print_result_all (

UtilTimePrintTarget_et printby)
Prints all measurement results

void util_time_print_result_partial (

int startid, int endid,

 UtilTimePrintTarget_et printby)

Prints partial measurement results with the specified content

void util_time_print_result_all_and_clear (

UtilTimePrintTarget_et printby)
Print all measurement results and clear all records

Intel ® SoC FPGA All-in-One Bare Metal Application Sample

Ver.22.1 / Rev.4 March 2023 Rev. 4 3 2 / 5 5 A LT I M A C o m p a n y, M A C N I C A , I n c .

 What is HWLib (Hardware Library)?

Used for bare metal applications, HWLib

⚫ reduces the complexity of writing low-level SoC software (no need to write your own SoC register definitions, etc.)

⚫ It abstracts all system registers

⚫ A usable layer for bare metal applications, OS drivers, OS kernels, etc.

⚫ Contains tested functionality for basic system operation (For example, changes in clock speed, cache settings, FPGA configuration, etc.)

 HWLib Components

HWLib consists of two components.

⚫ SoC abstraction layer (SoCAL) - (low-level HAL)

 Macro-based abstraction layer (header file) for accessing hardware IP registers

 Separates software and hardware

⚫ Hardware Manager (HWMgr)

 A collection of C and assembly APIs for high-level access to SoC hardware.

 Include SoCAL header files with #include

The util/hwlib directory for this sample project contains all the sources provided by Intel as HWLib, and you can use all the APIs by including the

HWLib header files you want to use.

Figure 8: HWLib Components

Application Bare Metal

App

Operating System

BSP

HWMgr

SoCAL
Hardware Library

SoC

Intel ® SoC FPGA All-in-One Bare Metal Application Sample

Ver.22.1 / Rev.4 March 2023 Rev. 4 3 3 / 5 5 A LT I M A C o m p a n y, M A C N I C A , I n c .

 HWLib Configuration (Functions with API)

The following HWLib API is provided.

Figure 1 HWLib API8

 HWLib Documentation

⚫ Location for SoCAL related documentation

○ <SoC EDS installation directory>/ip/altera/hps/altera_hps/doc/<device_name>/socal/html/index.html

 <device_name> For Cyclone V/Arria V: soc_cv_av

 For Arria10: soc_a10

⚫ Location for HW Manager related documentation

○ <SoC EDS installation directory>/ip/altera/hps/altera_hps/doc/hwmgr/<device name>/index.html

⚫ Also accessible from the Windows Start menu.

Figure 2 Accessing the HWLib Documentation from the Windows Start Menu8

Timers

Watchdog

General Purpose

Bridge Management

FPGA2HPS

HPS2FPGA

LWHPS2FPGA

Parity Mgmt ECC Mgmt

Cache Mgmt Serial Interface

UART

Cache/MMU Mgmt

MMU Mgmt

GPIO

DMA

MPU Subsystem

Memory Map Cntl

Address Filters

Mem Coherence

Clock Manager

FPGA Manager

Full Configuration

Reset Manager

System Manager

SoCAL Layer (non ARM IP)

SPI

I2C

Flash Memory

QSPI

NAND

SD/MMC

Cache Mgmt

Interrupt Ctrl

SDRAM Ctrl

Arria 10 SoC

Cyclone V SoC/Arria V SoC

Intel ® SoC FPGA All-in-One Bare Metal Application Sample

Ver.22.1 / Rev.4 March 2023 Rev. 4 3 4 / 5 5 A LT I M A C o m p a n y, M A C N I C A , I n c .

 HWLib Examples

The examples directory contains various HWLib software source codes.

 sample_cache_manage.c (cache management sample program)

 sample_clock_manager.c (clock manager sample program)

 sample_dma_mem.c (DMA transfer sample program)

 sample_dmac.c (HPS DMA-330 sample program)

 sample_ecc.c (ECC management sample program)

 sample_globaltmr.c (global timer sample program)

 sample_gpio.c (GPIO sample program)

 sample_gptmr.c (general-purpose timer sample program)

 sample_interruptctrlSGI.c (interrupt controller (mainly SGI) sample program)

 sample_time_measurement.c (time measurement implementation sample program)

 sample_watchdog.c (watchdog timer sample program)

If you use these Example source code files, you can set the corresponding Example to 1: Enable in the config.mk file in the TOP directory of your

project to build it as a compilation target for Arm DS.

[Listing 9] Compilation settings in the config.mk file

The following pages give an overview of the various samples in the examples directory (See each source code file and readme.txt for more

information).

Select example code to test (0:Disable/1:Enable) #

ENABLE_EXAMPLE_DMA : sample_dmac.c,sample_dma_mem.c (USED_DMA must be 1)

ENABLE_EXAMPLE_DMA := 0

ENABLE_EXAMPLE_CACHE : sample_cache_manage.c

ENABLE_EXAMPLE_CACHE := 0

ENABLE_EXAMPLE_CLK : sample_clock_manager.c

ENABLE_EXAMPLE_CLK := 0

ENABLE_EXAMPLE_ECC : sample_ecc.c

ENABLE_EXAMPLE_ECC := 0

ENABLE_EXAMPLE_GLTMR : sample_globaltmr.c

ENABLE_EXAMPLE_GLTMR := 0

ENABLE_EXAMPLE_GPIO : sample_gpio.c (Arria 10 is not supported)

ENABLE_EXAMPLE_GPIO := 0

ENABLE_EXAMPLE_GPTMR : sample_gptmr.c

ENABLE_EXAMPLE_GPTMR := 0

ENABLE_EXAMPLE_INTCTRL : sample_interruptctrlSGI.c

ENABLE_EXAMPLE_INTCTRL := 0

ENABLE_EXAMPLE_TIME : sample_time_measurement.c

ENABLE_EXAMPLE_TIME := 0

ENABLE_EXAMPLE_WDOG : sample_watchdog.c

ENABLE_EXAMPLE_WDOG := 0

Intel ® SoC FPGA All-in-One Bare Metal Application Sample

Ver.22.1 / Rev.4 March 2023 Rev. 4 3 5 / 5 5 A LT I M A C o m p a n y, M A C N I C A , I n c .

 Note:

In this HWLib Example, software operation is switched by operating 4 PUSH switches (PUSHSW below) and 4 SLIDE switches (DIPSW below) on

the HPS side.

However, if the Atlas-SoC/DE0-Nano-SoC/DE10 Nano development board is selected as the target board, the switches mentioned above will

be insufficient on the HPS side. Therefore, the following implementation is required.

 PUSHSW 0 ... Simultaneously pressing PUSHSW (KEY0, KEY1) on the FPGA side indicates PUSHSW0.

 PUSHSW 1 ... Simply pressing PUSHSW (KEY0) on the FPGA side indicates PUSHSW1.

 PUSHSW 2 ... Simply pressing the FPGA PUSHSW (KEY1) indicates PUSHSW 2.

 PUSHSW 3 ... Simply pressing the HPS USER PUSHSW (KEY2) indicates PUSHSW 3.

 DIPSW 0:3 ... FPGA DIPSW (SW0, SW1, SW2, SW3)

If the Arria 10 SoC development board is selected, all switches (PUSHSW x 4, DIPSW x 4) will be used on the FPGA side instead of the HPS side.

 Note:

sample_gpio.c (GPIO sample program) does not support the Arria® 10 SoC Development Kit (a10socdk) because GPIO-connected HPS user

switches are not available.

Intel ® SoC FPGA All-in-One Bare Metal Application Sample

Ver.22.1 / Rev.4 March 2023 Rev. 4 3 6 / 5 5 A LT I M A C o m p a n y, M A C N I C A , I n c .

 sample_cache_manage.c (Cache Management Sample Program)

 Table 9 sample_cache_manage.c Source File

Source File sample_cache_manage.c

TOP Function Name int sample_cache_manage_test_cmd(char* options)

Overview Cache Management Sample Program

Function

This program tries all the APIs in the following categories in HWLib.
Cache Management API

+ System Level Cache Management API
+ L1 Cache Management API
+ L2 Cache Management API

Sample Functions

The following is an overview of the sample functions.

① sample_cache_manage_init();
→ GPIO settings for DIPSW and PUSHSW for HPS on the target board (for operating the test program)
→ Execute HWLib API to enable all L1 and L2 Caches.

→ Change interrupt controller (GIC) settings to check operation.
Enable L2 Cache Combined IRQ "ALT _INT_INTERRUPT_L2_COMBINED_ IRQ."
The above interrupt is issued under the condition that all 3 types of abnormal notifications from L2 Cache Controller are combined (OR).
This sample does not implement a mechanism that causes Cache abnormality.
If a Cache abnormality is reproduced by some method, an interrupt occurs and the following console message is output (not verified).
"[INTERRUPT]L2 Cache Combined Interrupt is occurred!! status==0x0000****"

→ Configure the L2 Cache Controller to enable the interrupt notification function (Enable using HWLib).

② sample_cache_manage_test_main();

→ Run the test program. Perform the following processing in the infinite loop.
DISPSW

[4321]

PUSHSW0

Press

PUSHSW1

Press

PUSHSW2

Press

PUSHSW3

Press

xxx1
End the infinite loop

(End test program)
- -

To verify the cache effect

Start the function mul_f32_test_function

to measure and display the processing

time

 Note:

In this sample, MMU is not set, so the

effect of caching cannot be confirmed. If

necessary, add MMU settings and check.

xxx0

Execute API to enable/disable all L1

and L2 Cache functions

(Enable and Disable are executed

alternately every time SW is pressed)

- -

0010 - Run alt_cache_system_invalidate Run alt_cache_l1_data_invalidate_all

0100 -
alt_cache_system_clean

Run

alt_cache_l1_data_clean_all

Run

1000 -
alt_cache_system_purge

Run

alt_cache_l1_data_purge_all

Run

0011 - - Run alt_cache_l2_data_invalidate_all

0101 - -
alt_cache_l2_data_clean_all

Run

1001 - -
alt_cache_l2_data_purge_all

Execute

Remarks For details, see sample_cache_manage_readme.txt and sample_cache_manage.c.

Intel ® SoC FPGA All-in-One Bare Metal Application Sample

Ver.22.1 / Rev.4 March 2023 Rev. 4 3 7 / 5 5 A LT I M A C o m p a n y, M A C N I C A , I n c .

 sample_clock_manager.c (clock manager sample program)

 Table 1: sample_clock_manager.c Source File9

Source File sample_clock_manager.c

TOP Function Name int sample_clkmgr_test_cmd(char* options)

Overview Clock manager sample program

Function

This sample changes the M (1 -4096) of the Main PLL at the switch timing of the DIPSW 1 -4 for HPS (to test the HPS main clock frequency switching). The Main

clock is changed according to the value of the DIPSW 1 -4 for HPS as follows.

DISPSW

[4321]

M of the Main PLL

(1 - 4096)

mpu_clk

(MHz)

0000 4 50

0001 8 100

0010 12 150

0011 16 200

0100 20 250

0101 24 300

0110 28 350

0111 32 400

1000 36 450

1001 40 500

1010 44 550

1011 48 600

1100 52 650

1101 56 700

1110 60 750

1111 64 800

Try all APIs in the following categories in HWLib:
The Clock Manager API
 + Clock Manager Status
 + Safe Mode Options
 + PLL Bypass Control
 + Clock Gating Control
 + Clock Source Selection
 + Clock Frequency Control
 + Clock Manager Interrupt Management
 + Clock Group Configuration
All APIs in the above categories are tested, and the configuration information of the three PLLs (Main PLL, Peripheral PLL, SDRAM PLL) is displayed and visible.

Interrupts generated by the Clock Manager (Lock/Unlock of the three PLLs) are also displayed on the console when they occur.

Sample functions

The following is an overview of the sample functions.

① sample_clkmgr_init();
→ Makes GPIO settings for DIPSW and PUSHSW for HPS on the target board (for test program operation).
→ Makes Global Timer settings (Timer enabled for CPU Core operation clock) (for test program operation).

→ Changes the interrupt controller (GIC) settings to check operation.
After setting with this function, interrupt processing is executed when PLL Lock/Unlock triggers, and the following console message is output.

"[IRQ#205] CLKMGR_IRQ (0x000000CD,0x000001C7) count=1"

② sample_clkmgr_test_print_pllconfig ();
→ Executes the information acquisition API of Clock Manager, and displays the following information (both trying the information acquisition API and checking

the settings).

③ sample_clkmgr_test_customize_config ();
→ Executes the Clock Manager configuration change API (trial of the configuration change API).

④ sample_clkmgr_test_main();

→ Executes the test program. Performs the following processing in an infinite loop.
(1) Outputs the counter value to the console every time the last 28 bits or more of the Global Timer counter value (bit #31:28 of the lower 32 bits) change.

Outputs the counter value to the console unconditionally while PUSHSW3 for HPS is pressed (for checking the progress of the Timer counter).

(2) Attempts the API of Category: Clock Manager Status when PUSHSW2 for HPS is pressed.
Clears and displays PLL Lock/Unlock Status (attempts the Clock Manager Status API).

(3) Attempts the API of Category: Safe Mode Options when PUSHSW1 for HPS is pressed.
Displays and clears the Safe Mode status (try Safe Mode Options API).

(4) Attempts to change the Multiplier setting value of the PLL and display the clock frequency after the change at the time of change of DIPSW1-4 for HPS.
For M (1-4096) of the Main PLL, applies (4bit value × 4) to the Multiplier setting value with DIPSW1 as MSB and DIPSW4 as LSB.

(5) Ends the infinite loop at the time of press of PUSHSW0 for HPS (end of test program).

Remarks For details, refer to sample_clock_manager_readme.txt and sample_clock_manager.c.

Intel ® SoC FPGA All-in-One Bare Metal Application Sample

Ver.22.1 / Rev.4 March 2023 Rev. 4 3 8 / 5 5 A LT I M A C o m p a n y, M A C N I C A , I n c .

 sample_dma_mem.c (DMA transfer sample program)

 Table 2: sample_dma_mem.c Source File9

Source File sample_dma_mem.c

TOP Function Name int sample_dma_mem_test_cmd(char* options)

Overview DMA Transfer Sample Program

Function

This sample performs memory-to-memory DMA transfer using HPS built-in DMA (DMA-330).
This sample is implemented in an environment where MMU, L1 and L2 caches, and ACP ports are enabled.
The following options can be selected by operating PUSHSW and DIPSW on the target board.

 ・DMA Channel selection (0~7)
 ・Transfer path (via normal port (ACP not used)/ACP port)
 ・Enable/disable cache maintenance operations

 Note: Because the Arria 10 SoC automatically determines the use of ACP ports by looking at the cache attributes of AXI transactions,

the ACP Use/Not Use option has no meaning.
When the DMA test is run with the above options selected, the following 8 patterns of buffer-to-buffer transfers with different MMU settings are attempted per execution,

and the processing time and result (OK/NG) of the DMA transfers are displayed.
Test Source buffer Destination buffer

TEST.01 NonCache Buffer NonCache Buffer

TEST.01 Cacheable [Write-Through (WT)] Buffer NonCache Buffer

TEST.01 Cacheable [Write-Back (WB)] Buffer NonCache Buffer

TEST.01 Cacheable [Write-Back with Allocate (WBA)] Buffer NonCache Buffer

TEST.01 NonCache Buffer Cacheable [WBA] Buffer

TEST.01 Cacheable [WT] Buffer Cacheable [WBA] Buffer

TEST.01 Cacheable [WB] Buffer Cacheable [WBA] Buffer

TEST.01 Cacheable [WBA] Buffer Cacheable [WBA] Buffer

The processing procedure for DMA transfer is implemented as follows.
The processing time (*) displayed during execution is also displayed for each of the following steps.

< DMA transfer test processing procedure >
1. Test data storage (writing data to the transfer source/clearing 0 of the transfer destination)

2. Cache maintenance (reflecting data stored in cache memory to physical memory)
3. Microcode generation for DMA-330
4. DMA execution (start of transfer ~ DMA completion interrupt occurs)

5. Verify DMA transfer results... OK/NG display of results

 Note: If DMA transfer via ACP port is used, the L1 and L2 caches are also affected, which may reduce the cache efficiency for CPU

access.
When using ACP, be sure to thoroughly verify the CPU's processing performance (The processing time displayed in this sample

is only a reference value.).

After program execution starts, when initial settings and execution tests of various APIs are completed, loop processing starts with the following display.
 "==== Start While(1) loop process!!! (Exit PUSHSW0(SW8) becomes ON.) ===="
If an operation of PUSHSW for HPS is detected during the loop, the following processing is executed.

Switch Processing to be executed

PUSHSW0 Exits the loop and ends the program.

PUSHSW1 DMA Register Display (View the status of Management Thread, Ch Thead)

PUSHSW2 DMA Transfer Test Run (Option Selection: Normal Port (ACP Not Used)

PUSHSW3 DMA Transfer Test Run (Option Selection: ACP Port)

DIPSW4 Option Selection: Cache Maintenance ON/OFF

DIPSW3 Option Selection: DMA Channel 0 ~ 7

 Note: Basically, the DMA test is run by operating the PUSHSW/DIPSW while running (F8). To check the contents of the transfer data,

break (F9) and refer to the memory view.

Supplement

The DMA transfer API in this sample uses alt_dma_custom.c, which is customized based on alt_dma.c of HWLib.
For details, see Supplement 4 on sample_dma_mem_readme.txt.
Set USED_DMA to 1 in config.mk and build.

Sample function

The following is an overview of the sample function.

① sample_dmac_test_init();
→ The configuration required to use DMA-330 (such as registering interrupt callbacks) is done in this function.

② sample_dmac_print_manager_status();

→ Displays the DMA Manager thread status.
③ sample_dmac_print_ch_status(channel, true);

→ Displays the DMA CH status currently selected in DIPSW.

④ sample_dmac_test_main(channel, acp_en, cacheope_en);
→ Runs the DMA transfer test. Transfers 8 patterns.

Remarks For details, see sample_dma_mem_readme.txt and sample_dma_mem.c.

Intel ® SoC FPGA All-in-One Bare Metal Application Sample

Ver.22.1 / Rev.4 March 2023 Rev. 4 3 9 / 5 5 A LT I M A C o m p a n y, M A C N I C A , I n c .

 sample_dmac.c (sample program using HPS DMA (DMA -330))

 [Table 3] sample_dmac.c Source File9

Source file sample_dmac.c

TOP Function name int sample_dmac_test_cmd(char* options)

Overview Sample program using HPS DMA (DMA-330)

Function

This sample performs DMA transfer using HPS built-in DMA (DMA-330).
To execute this program, input the following parameters from the console.
<DMA transfer source address > <DMA transfer destination address > <DMA transfer size > < transfer byte width >
For example:
Source address = 0x 10,000
Destination address = 0x12000
Transfer size = 0x100
Transfer byte width = 8
For, enter 10,000 12000 100 8 as follows:

Command: dmatest 10000 12000 100 8
dmatest 10000 12000 100 8
dma_test
==== DMA Test Parameters ====

 - DMA CH Select ALT_DMA_CHANNEL_0
 - Source Address 0x00010000
 - Destination Address 0x00012000
 - Transport size 0x00000100
 - Transport via ACP Port ... False
 - Execute cache operation .. True
==== Time Mesurement Results (0 ~ 4) ====
[TIME# 0]

 - Elapsed Seconds (nsec): 0.000001 (1280)
[TIME# 1]

 - Elapsed Seconds (nsec): 0.000002 (2720)
[TIME# 2]

 - Elapsed Seconds (nsec): 0.000003 (3840)
[TIME# 3]

 - Elapsed Seconds (nsec): 0.000003 (3040)
[TIME# 4]

 - Elapsed Seconds (nsec): 0.000008 (8800)

DMA Result ... OK

[IRQ#136] DMA_IRQ0 (0x00000088,0x00000003) count=10

Addendum

The DMA transfer API in this sample uses alt_dma_custom.c, which is customized based on HWLib's alt_dma.c.
For more information, see Addendum on sample_dmac_readme.txt.
Set USED_DMA to 1 in config.mk and build.

Sample Functions

The following is an overview of the sample functions.
① sample_dma_m2m_setting(bytes);

→ Sets DMA (DMA-330) according to the value of the bytes argument. Set bytes to 1, 2, 4, or 8.

② sample_dmac_test_main(ALT_DMA_CHANNEL_0, (void*)srcaddr, (void*)dstaddr, (size_t)size);
→ Call the sample DMA transfer execution function sample_dmac_test_execute().

③ sample_dmac_test_execute();

→ Call the alt_dma_channel_exec () DMA transfer execution API function.

Remarks For details, see sample_dmac_readme.txt and sample_dmac.c.

Intel ® SoC FPGA All-in-One Bare Metal Application Sample

Ver.22.1 / Rev.4 March 2023 Rev. 4 4 0 / 5 5 A LT I M A C o m p a n y, M A C N I C A , I n c .

 sample_ecc.c (ECC administration sample program)

 Table 9: sample_ecc.c Source File

Source File sample_ecc.c

TOP Function Name int sample_ecc_test_cmd(char* options)

Overview CC Management Sample Program

Function

Use HWLib to operate all of the APIs classified in the following categories.
 Error Correcting Code (ECC) Management

Use ECC of On-Chip RAM to check the following operations.

 ・ECC error/injection
 ・Occurrence of ECC interrupt
 ・Read data in case of ECC error (memory check)

 ・ECC operation difference depending on cache enable/disable
After program execution is started, when initialization and execution tests of various APIs are completed, loop processing starts with the following display.
 "==== Start While(1) loop process!!! (Exit PUSHSW0(SW8) becomes ON.) ===="

If an HPS PUSHSW operation is detected during a loop, the following processes are executed.
Switch Processing to be executed

PUSHSW0 Exit the loop and end the program

PUSHSW1 Perform cache cleaning and read access to the test area (check for occurrence of ECC interrupt)

PUSHSW2 Perform cache purge (clean and disable) and read access to the test area (check for occurrence of ECC interrupt)

PUSHSW3 ECC error injection and memory check are performed according to the settings of DIPSW1 and DIPSW2.

DIPSW for HPS is used to select the following operations.
Switch Operation selection

DIPSW1 ECC Double Bit Error (uncorrectable) Injection setting {OFF: disabled/ON: enabled}

DIPSW2 ECC Single Bit Error (correctable) Injection setting {OFF: disabled/ON: enabled}

DIPSW3 L2C-310 Debug Mode setting {OFF: disabled/ON: enabled}

(ON: When enabled, the cache enters a mode in which it operates with "forced write-through" and "line fill disabled")

DIPSW4 L1/L2 cache setting {OFF: Disabled/ON: Enabled}

⚫ If you press PUSHSW3 with either DIPSW1 or DIPSW2 set to ON, ECC errors will be injected during memory check write access.
Each time a memory check NG is detected, the address, expected value, and read result of the NG will be displayed.
The first 128 bytes (0x80) of On-Chip RAM will be used as the test area.
When cache is enabled (DIPSW4 = ON), write access is set to write-back, so writing to On-Chip RAM does not work and error injection does not work.
By turning DIPSW3 ON, the write-through mode is forcibly entered, and error injection can be set to work even when cache is enabled.

⚫ Press either PUSHSW1 or PUSHSW2 to perform read access to the memory checked area.
By performing this operation after error injection during memory check, you can check the ECC error detection operation. Displays a message each time an ECC

interrupt is detected.
When cache is enabled (DIPSW4 = ON), cache maintenance processing is performed beforehand.
(PUSHSW1 performs cache clean, PUCHSW2 performs cache purge (clean and disable))

⚫ Memory check and read access are performed by various access methods to verify operation.
- On-Chip RAM access address: 0x00000000~/0xFFFF0000~
- Bit width: 8bit/16bit/32bit/64bit

Sample function

The following is an overview of the sample function.

① util_time_init();
→ Initializes processing time measurement. Performs the following operations.
 Sets the global timer for processing time measurement (These settings are required for measurement. Currently, the measure process call is not

implemented).
 Sets the Clock Manager and displays the setting information (for checking the operating environment parameters such as various clock frequencies).

② sample_ecc_test_init();

→ Performs the following operations.
 Sets the remap register (Configure On-Chip RAM to be Accessible from First Address 0x00000000).
 Sets the GPIO of the target board (Setting PUSHSW and DIPSW for HPS).
 Configures and enables on-chip RAM ECC (ECC Enabled and Interrupt Allowed).
 Configures and enables MMU (On-Chip RAM space is set to write-back for both L1 and L2 caches).

③ sample_ecc_test_main();

→ Runs the test program. Runs the switch detection process described in "Function" above in an infinite loop.
④ sample_ecc_test_uninit();

→ This sample does not perform any processing.

⑤ util_time_uninit();
→ Performs post-processing of processing time measurement processing. Displays the measurement result on the console.

Remarks For details, see sample_ecc_readme.txt and sample_ecc.c.

Intel ® SoC FPGA All-in-One Bare Metal Application Sample

Ver.22.1 / Rev.4 March 2023 Rev. 4 4 1 / 5 5 A LT I M A C o m p a n y, M A C N I C A , I n c .

 sample_globaltmr.c (global timer sample program)

 Table 4: sample_globaltmr.c Source File9

Source File sample_globaltmr.c

TOP Function Name int sample_globaltmr_test_cmd(char* options)

Overview Global Timer Sample Program

Function

This program allows you to run all of the APIs in the following categories in HWLib.
 The Global Timer Manager API

Run the global timer and check the operation of the following functions.
 Check that the timer counter cycle changes according to the prescaler setting.
 Check that the following functions operate when comparator is enabled (Global Timer Control Register is set to Comp Enable = 1).

- Auto-increment function (Each time the comparator comparison result matches, it is added automatically.)

- Interrupts from the global timer (This occurs when the comparator comparison result matches.)

Sample function

The following is an overview of the sample function.
① sample_globaltmr_alldisable();

→ Sets all functions of the global timer to disable/stop (try the API for setting disable/stop).

② sample_globaltmr_setting_gic();
→ Change the interrupt controller (GIC) settings to check operation.
 After setting with this function, the interrupt operates under the following conditions.

- sample_globaltimer_callback() starts at the globaltimer interrupt trigger.
- The 8 ports of DIPSW and PUSHSW for HPS are not used as interrupt triggers (leave the default without changing the settings).

③ sample_globaltmr_paraminit();

→ Global timer operation Try the API for parameter setting (trial and initial setting of the API for parameter setting).
 The following 3 parameters are set.
- Set the pre-scaler setting value (timer clock division ratio) to 0 (The input clock [CPU core operating clock 800MHz] is applied as it is to the tie mark

lock. When set to 1, the input clock is divided into 400 MHz, when set to 2, the input clock is divided into 200 MHz, and so on.).
- Set the auto-increment function addition register value (32 bits) to 0x40 million. Each time the comparator comparison results match, the register value

is automatically added to the comparator.

- Set the current value of the global timer + 0x0000000040000000 in the comparator (register for comparing 64bit counters).
④ sample_globaltmr_allenable();

→ Set all functions of the global timer to enable/start (try enable/start setting API).

⑤ sample_globaltmr_print_get_result();
→ Try various register values and status acquisition APIs (try information acquisition API and check settings).

⑥ sample_globaltmr_test_main();

→ Execute the test program.
 Perform the following processing in an infinite loop.
- The counter value is output to the console every time the lower 26 bits or more of the timer counter value (bit #31:26 of the lower 32 bits) change. The

counter value is output to the console unconditionally while PUSHSW3 for HPS is pressed (for checking the progress of the timer counter).
- Changes the comparator register value (64 bits) when PUSHSW1 for HPS is pressed. Sets the upper 32bits to the upper 32bit value of the counter + 1,

and the lower 32bits to the lower 32bit value of the timer counter. Outputs the changed value to the console (slightly advances the comparator register

value to check comparator operation).
- Outputs the comparator register value (64 bits) to the console when PUSHSW2 for HPS is pressed (to check the auto-increment function).
- Changes the prescaler setting value when DIPSW1 -4 for HPS is pressed. Sets the 4bit value as MSB for DIPSW1 and LSB for DIPSW4 to the prescaler,

and outputs the setting to the console (You can see that the operating speed of the timer counter changes in relation to the set value of the prescaler.).
- Ends the infinite loop when PUSHSW0 for HPS is pressed (terminates the test program).

⑦ sample_globaltmr_callback();

→ Outputs to the console that an interrupt has occurred, and clears the interrupt status.

Remarks For details, refer to sample_globaltmr_readme.txt and sample_globaltmr.c.

Intel ® SoC FPGA All-in-One Bare Metal Application Sample

Ver.22.1 / Rev.4 March 2023 Rev. 4 4 2 / 5 5 A LT I M A C o m p a n y, M A C N I C A , I n c .

 sample_gpio.c (GPIO sample program)

 Table 5 sample_gpio.c Source File9

Source sample_gpio.c

TOP Function Name int sample_gpio_test_cmd(char* options)

Summary GPIO Sample Program

Function

 Note: This sample program does not support the Intel ® Arria® 10 SoC Development Kit (a10socdk) because a GPIO-connected HPS

user switch is not available.

The API classified into the following categories in HWLib is operated as a whole.
 The General Purpose Input/Output Manager API

 + General-Purpose IO Configuration Functions

 + General-Purpose IO Interrupt Functions
 + General-Purpose IO via Bit Index
 + General-Purpose IO Utility Functions
GPIO is configured so that the target board's HPS DIPSW and PUSHSW can be used as input signals, and changes in the GPIO input register values are displayed on

the debugger console in conjunction with each switch operation.

Sample Functions

The following is an overview of the sample functions.
① sample_gpio_utility();

→ Category: General-Purpose IO Utility Functions API (GPIO Utility API Trial).
② sample_gpio_utility();

→ Category: General-Purpose IO Configuration Functions and General-Purpose IO via Bit Index API (GPIO Configuration API Trial).

③ sample_gpio_iconfig();
→ Category: General-Purpose IO Interrupt Functions API (GPIO Interrupt Configuration API Trial).

④ sample_gpio_iointerrupt();

→ Change the interrupt controller (GIC) settings to check operation.
 After setting with this function, the interrupt operates under the following conditions:

- sample_gpio_callback() starts at the GPIO interrupt trigger.

- Select the interrupt trigger using DIPSW1:2 for HPS.
DIPSW1:2 = 0 ... Rising-Edge
DIPSW1:2 = 1 ... Falling-Edge
DIPSW1:2 = 2 ... Rising-Edge
DIPSW1:2 = 3 ... Falling-Edge

- GPIO interrupt is generated when PUSHSW3 for HPS is pressed.

⑤ sample_gpio_iopolling();
→ The GPIO input register is monitored in the infinite loop, and whenever a change in the value is detected, the change is output to the debugger console.

※ The infinite loop is terminated (the test program is terminated) when PUSHSW0 for HPS is pressed.

⑥ sample_gpio_callback();
→ The interrupt occurrence and interrupt status value are recorded in the log buffer, and the interrupt status is cleared. Based on the information recorded

in the log buffer, it is output to the console after the normal routine returns.

Remarks For details, see sample_gpio_readme.txt and sample_gpio.c.

Intel ® SoC FPGA All-in-One Bare Metal Application Sample

Ver.22.1 / Rev.4 March 2023 Rev. 4 4 3 / 5 5 A LT I M A C o m p a n y, M A C N I C A , I n c .

 sample_gptmr.c (General-Purpose Timer Sample Program)

 Table 9: sample_gptmr.c Source File

Source File sample_gptmr.c

TOP Function Name int sample_gptmr_test_cmd(char* options)

Overview General-Purpose Timer Sample Program

Function

Use HWLib to run all of the APIs classified into the following categories.
The General Purpose Timer Manager API
 + Enable, Disable, and Status

 + Counters Interface
 + Interrupts
 + Mode Control

Display all of the initial values of General Purpose Timer (Hereinafter, GPT) related registers that can be referenced from HWLib, and start all of the GPTs (4 below).
 OSC1 timer 0 ... 32bit timer running with osc1_clk (fixed operation clock)
 OSC1 timer 1 ... 32bit timer operated by osc1_clk (fixed operating clock)
 SP timer 0 32bit timer operated by l4_sp_clk
 SP timer 1 32bit timer operated by l4_sp_clk

 Note: The OSC1 timer uses the external clock (osc1_clk) as its operating clock (fixed).
 Note: The SP timer is variable because it uses the Main PLL (C1: main_base_clk) or Peripheral PLL (C4: peripheral _base_clk) as its clock source (* When the

operation clock is changed, a note to stop the timer is written in the manual.).
In addition, all interrupts (4 lines) triggered by each GPT timeout are enabled, and the console is displayed when they occur.

Sample Functions

The following is an overview of the sample functions.

① sample_gptmr_test_init();
→ Initialize the test program.
 Perform the following processing.

- Initialize HWLib for GPT (alt_gpt_all_tmr_init).
- Display all GPT default values.
- Change GPT settings for testing.
✓ OSC1 timer 0 ... Timeout interrupt occurs every 20 seconds.

(mode=ALT_GPT_RESTART_MODE_PERIODIC(User-defined count mode), resetcount=500000000(@25MHz))
✓ OSC1 timer 1 ... Timeout interrupt occurs every 40 seconds

(mode=ALT_GPT_RESTART_MODE_PERIODIC(User-defined count mode), resetcount=1000000000(@25MHz))
✓ SP timer 0 Timeout interrupt occurs every 5 seconds

(mode=ALT_GPT_RESTART_MODE_PERIODIC(User-defined count mode), resetcount=500000000(@100MHz))
✓ SP timer 1 Timeout interrupt occurs every 10 seconds

(mode=ALT_GPT_RESTART_MODE_PERIODIC(User-defined count mode), resetcount=1000000000(@100MHz))
*For details, see the sample_gptmr_test_init code.

- Displays all GPT settings after the change.
- Displays interrupt controller settings and set values.

② sample_gptmr_test_main();

→ Runs the test program.
 The following processing is performed in an infinite loop.

- The operation mode of each GPT is changed when the HPS DIPSW1 -4 is changed. When the mode is changed, the timer is restarted.
The correspondence of each DIPSW is as follows.
DIPSW1 .. OSC1 timer 0
DIPSW2 .. OSC1 timer 1
DIPSW3 .. SP timer 0
DIPSW4 .. SP timer 1

※ Each DIPSW is PERIODIC (User-defined count mode) when ON, or ONESHOT (Free-running mode) when OFF.

- When PUSHSW1 for HPS is pressed, the counter values of the four GPTs and the remaining time until timeout (milliseconds) are displayed.
- When PUSHSW2 for HPS is pressed, the operation information (mode, timer enable, interrupt enable, interrupt pending) of the four GPTs is displayed.
- When PUSHSW3 for HPS is pressed, all four GPTs are restarted (reset).

- When PUSHSW0 for HPS is pressed, the infinite loop is terminated (the test program is terminated).
③ sample_gptmr_test_uninit();

→ Performs HWLib postprocessing for GPT (alt_gpt_all_tmr_uninit).

Remarks For details, refer to sample_gptmr_readme.txt and sample_gptmr.c.

Intel ® SoC FPGA All-in-One Bare Metal Application Sample

Ver.22.1 / Rev.4 March 2023 Rev. 4 4 4 / 5 5 A LT I M A C o m p a n y, M A C N I C A , I n c .

 sample_interruptctrlSGI.c (interrupt controller (mainly SGI) sample program)

 Table 6: sample_interruptctrlSGI.c Source File9

Source sample_interruptctrlSGI.c

TOP Function Name int sample_intctrl_test_cmd(char* options)

Overview Interrupt controller (mainly SGI) sample program

Function

This program performs a complete set of HWLib APIs classified into the following categories.
Interrupt Controller Low-Level API [Secure]

 + Interrupt Controller Global Interface [Secure]

 + Interrupt Controller Distributor Interface [Secure]
 + Software Generated Interrupts [Secure]
 + Interrupt Controller CPU Interface [Secure]

 + Interrupt Service Routine [Secure]
 + Interrupt Utility Functions [Secure]
However, the API used for interrupt setting in other samples has already been verified in other samples, so it is omitted.

In this sample, settings are made to run Software Generated Interrupt(hereafter, SGI), and SGI is issued when PUSHSW for HPS is operated.
Note that this sample is created as a single-core project, so it is not possible to check interrupt notifications between cores in multi-cores. (The processing to issue SGI

to other cores is also executed in this sample.).
During the program initialization process, the callback function is registered and the interrupt setting (Distributor activation and priority setting) is performed for all SGI

interrupts (16 as shown below).
ALT_INT_INTERRUPT_SGI0 0x00
ALT_INT_INTERRUPT_SGI1 0x10
ALT_INT_INTERRUPT_SGI2 0x20
ALT_INT_INTERRUPT_SGI3 0x30
ALT_INT_INTERRUPT_SGI4 0x40
ALT_INT_INTERRUPT_SGI5 0x50
ALT_INT_INTERRUPT_SGI6 0x60
ALT_INT_INTERRUPT_SGI7 0x70
ALT_INT_INTERRUPT_SGI8 0x80
ALT_INT_INTERRUPT_SGI9 0x90
ALT_INT_INTERRUPT_SGI10 0xA0
ALT_INT_INTERRUPT_SGI11 0xB0
ALT_INT_INTERRUPT_SGI12 0xC0
ALT_INT_INTERRUPT_SGI13 0xD0
ALT_INT_INTERRUPT_SGI14 0xE0
ALT_INT_INTERRUPT_SGI15 0xF0

 Note: The values to the right of the above list are priority settings.

Select the target SGI(ALT_INT_INTERRUPT_SGI0 to ALT_INT_INTERRUPT_SGI15) with the HPS DIPSW (4bit) value, and press any of the HPS PUSHSW1 ~ 3 to issue

an SGI interrupt.
Switch Issue an SGI interrupt

PUSHSW1 Notifies the SGI source core of the interrupt (addressed to Core# 0) → SGI callback works in Core#0.

PUSHSW2 Notify all cores except the SGI source core (to Core#1) → No response since Core#1 is not moved

PUSHSW3 Notify all cores including the SGI source core (To Core#0, Core#1) → The callback works only on Core#0. Core#1 does not respond

When the SGI callback function works, a message in the following format is displayed on the DS-5 application console (In parentheses “(xxx, yyy),” the first value (xxx)

is the value of icciar, the second value (yyy) is the detection count counter for that IRQ, and the value of count=* is the total detection count for all IRQs.).
 "[IRQ#0] SGI0 (0x00000000,0x0000000A) count=11"

Sample function

The following is an overview of the sample function.
① sample_intctrl_test_init();

→ Initialize the test program. Perform the following processing:
 Attempt API for interrupt controller enable setting (alt_int_cpu_enable_ns/all, alt_int_global_enable_ns/all).
 Execution of interrupt controller initialization API.
 Display interrupt controller settings and values, such as SGI settings and callback registration.
 Attempt API for getting interrupt controller CPU interface parameters.

- alt_int_cpu_config_get()

- alt_int_cpu_priority_mask_get()
- alt_int_cpu_binary_point_get()
- alt_int_cpu_binary_point_get_ns()

 Attempt parameter setting API of interrupt controller CPU interface.
- alt_int_cpu_config_set()
- alt_int_cpu_priority_mask_set()

- alt_int_cpu_binary_point_set()
- alt_int_cpu_binary_point_set_ns()

 Execution of interrupt controller enable setting API (alt_int_cpu_enable, alt_int_global_enable).

② sample_intctrl_test_main();
→ Execute test program.
 The following processing is performed in an infinite loop.

- The SGI issue API is executed when PUSHSW1 for HPS is pressed. Specify the following parameters to issue SGI to Core#0.
int_id (1st Argument) = DIPSW for HPS (4 bits)
Specify 0 (ALT_INT_INTERRUPT_SGI0) to 15 (ALT_INT_INTERRUPT_SGI15).
target_filter (2nd Argument) = ALT_INT_SGI_TARGET_SENDER_ONLY (specify the source only)

Intel ® SoC FPGA All-in-One Bare Metal Application Sample

Ver.22.1 / Rev.4 March 2023 Rev. 4 4 5 / 5 5 A LT I M A C o m p a n y, M A C N I C A , I n c .

- Execute the SGI issue API when PUSHSW2 for HPS is pressed. Specify the following parameters to issue SGI to Core#1.
int_id (1st Argument) = DIPSW for HPS (4 bits)
Specify 0 (ALT_INT_INTERRUPT_SGI0) to 15 (ALT_INT_INTERRUPT_SGI15).
target_filter (2nd Argument) = ALT_INT_SGI_TARGET_ALL_EXCL_SENDER (specify all except the issuer)

- Execute the SGI issue API when PUSHSW3 for HPS is pressed. SGI is issued to Core#0 and Core#1 by specifying the following parameters.
int_id (1st Argument) = DIPSW for HPS (4 bits)
Specify 0 (ALT_INT_INTERRUPT_SGI0) to 15 (ALT_INT_INTERRUPT_SGI15).
target_filter (2nd Argument) = ALT_INT_SGI_TARGET_LIST (target_list specifies the destination)
target_list (3rd Argument) = 3 (bit#0[Core#0]=1 && bit#1[Core#1]=1)

- Ends the infinite loop when PUSHSW0 for HPS is pressed (terminates the test program).
③ sample_intctrl_test_uninit();
 Attempts to disable the interrupt controller API (alt_int_cpu_disable_ns/all, alt_int_global_disable_ns/all).
 Attempts to disable the interrupt controller API (alt_int_cpu_disable, alt_int_global_disable).

 Note: You can try different settings from this sample by rewriting the following definitions in sample_interruptcontrollerSGI.c.

/*! TEST Parameters */
#define SAMPLE_PARAM_USE_SECURE_BINARY_POINT (false) /*!< If true then use the Secure Binary Point Register for both secure and non-secure interrupts. If false
then use Secure Binary Point Register for secure interrupts and non-secure Binary Point Register for non-secure interrupts. */
#define SAMPLE_PARAM_USE_FIQ_FOR_SECURE_INT (false) /*!< If true then signal secure interrupts using the FIQ signal. If false then signal secure
interrupts using the IRQ signal. */
#define SAMPLE_PARAM_ALLOW_SECURE_ACK_FOR_ALL (true) /*!< Controls whether a secure acknowledgement of an interrupt, when the highest priority pending interrupt

is non-secure, causes the CPU interface to acknowledge the interrupt. If true then a secure acknowledgement of the interrupt is not completed and the Interrupt ID
of the Non-secure interrupt is returned. If false then a secure acknowledgement of the interrupt is not completed and the Interrupt ID of 1022 is returned. */
#define SAMPLE_PARAM_PRIORITY_MASK (255) /*!< The interrupt priority mask is the group priority needed to instruct the GIC to preempt lower priority

interrupt. The valid range for this value is 0 - 255. */
#define SAMPLE_PARAM_BINARY_POINT (0) /*!< The binary point to use. The valid range for the value is 0 - 7. */
#define SAMPLE_PARAM_BINARY_POINT_NS (0) /*!< The binary point to use. The valid range for the value is 0 - 7. */

Remarks For details, see sample_interruptctrlSGI_readme.txt and sample_interruptctrlSGI.c.

Intel ® SoC FPGA All-in-One Bare Metal Application Sample

Ver.22.1 / Rev.4 March 2023 Rev. 4 4 6 / 5 5 A LT I M A C o m p a n y, M A C N I C A , I n c .

 sample_time_measurement.c (sample program to implement time measurement)

 Table 97: sample_time_measurement.c Source File

Source sample_time_measurement.c

TOP Function Name int sample_time_measurement_test_cmd(char* options)

Overview Sample program to implement time measurement

Function

This is a sample program that implements the processing time measurement mechanism using The Global Timer Manager API of HWLib.
By adding the following source/header files to another project, you can measure the processing time with the same mechanism.

- util_time_measurement.c

- util_time_measurement.h

⚫ Description of the processing time measurement function
void util_time_init(void);

- Initialization processing. This function must be called first when using this function.
void util_time_record_start_point(uint32_t index);

- Implement the function CALL at the point where you want to start measurement.
<uint32_t index>

index is the number used to identify measurement points when measuring multiple points simultaneously. Specify an appropriate number in the range of 0~31.
If you want to increase the number of simultaneous measurement points, you can do so by increasing the definition value of #define UTIL_TIME_MAX_TRACE

in the header file.
*The index value of the argument is implemented as the same specification for all functions.

void util_time_record_end_point(uint32_t index);
- Implement this function call at the end point of the measurement (The index argument must be equal to the corresponding start point).

void util_time_print_result_by_counter(uint32_t index);
- Displays one measurement result specified by index as a global timer counter value.

void util_time_print_result_by_seconds(uint32_t index);

- Displays one measurement result specified by index as a time.
void util_time_print_result_all(void);

- Displays all measurement results in both counter value and time.
void util_time_print_result_all_and_clear(void);

- Displays all measurement results in both counter value and time. Also clears all measurement result information.

 Note:

⚫ The measurement results are based on the assumption that the correct time is displayed when the HPS main clock (mpu_clk) is set to 800 MHz.
If you are using a different clock, you can change the following definitions in the header file.

#define UTIL_TIME_GLOBALTIMER_PRESCALE 1
#define UTIL_TIME_NSEC_PER_COUNT 10

For example, if you are using a 600 MHz clock, change the following values.
#define UTIL_TIME_GLOBALTIMER_PRESCALE 2
#define UTIL_TIME_NSEC_PER_COUNT 20

UTIL_TIME_GLOBALTIMER_PRESCALE is the global timer prescaler setting value.
UTIL_TIME_NSEC_PER_COUNT is multiplied by the difference value of the global timer counter when calculating the time.

⚫ Any value less than nanosecond in the global timer count period is a truncation error, so use the prescaler value as a setting value that reduces the error less

than nanosecond.
If you cannot change the prescaler value because you are using the global timer for another purpose, use the counter value measurement result (multiply the

count period separately).
⚫ An Excel sheet has been prepared to automatically calculate the above parameters (UTIL_TIME_GLOBALTIMER_PRESCALE, UTIL_TIME_NSEC_PER_COUNT).

->Use the file ParameterSettings_for_TimeMeasurement.xlsx in the project.

Sample function

The following is an overview of the sample function.
① sample_time_measurement_init();

→ GPIO settings for DIPSW and PUSHSW for HPS on the target board (settings for test program operation).

→ Call initialization of time measurement processing (void util_time_init).
② sample_time_measurement_test();

→ An infinite loop is performed, and the following processing is called when PUSHSW and DIPSW for HPS are operated.

- DIPSW1:4 .. Used as an index value to identify the measurement target.
- PUSHSW0 .. Displays all measurement results and exits the infinite loop (util_time_print_result_all) (ends the test).
- PUSHSW1 .. Displays and clears all measurement results (util_time_print_result_all_and_clear).

- PUSHSW2 .. Records the start of measurement with DIPSW as the index value (util_time_record_start_point).
- PUSHSW3 .. Records the end of measurement with DIPSW as the index value, and displays one measurement result (util_time_record_end_point,

util_time_print_result_by_counter, util_time_print_result_by_seconds).

 Point: While an infinite loop is running, press PUSHSW2, wait for any number of seconds, and then press PUSHSW3. The time corresponding to the wait time

is displayed as the measurement result.

Remarks For details, refer to sample_time_measurement_readme.txt and sample_time_measurement.c.

Intel ® SoC FPGA All-in-One Bare Metal Application Sample

Ver.22.1 / Rev.4 March 2023 Rev. 4 4 7 / 5 5 A LT I M A C o m p a n y, M A C N I C A , I n c .

 sample_watchdog.c (watchdog timer sample program)

 Table 8 sample_watchdog.c Source File9

Source File sample_watchdog.c

TOP Function Name int sample_wdog_test_cmd(char* options)

Overview Watchdog Timer (and Reset Manager) Sample Program

Function

This program performs all of the APIs classified in the following categories in HWLib.
 The Watchdog Timer Manager API

 + Watchdog Timer Enable, Disable, Restart, Status

 + Watchdog Timer Counter Configuration
 + Watchdog Timer Interrupt Management
 + Watchdog Timer Miscellaneous Configuration

 The Reset Manager
 + Reset Status
 + Reset Control

⚫ After displaying all the initial values of watchdog timer-related registers that can be referenced from HWLib, all three watchdog timers listed below are started.

- CPU Private Watchdog Timer(ALT_WDOG_CPU)
- L4 Watchdog 0 (ALT_WDOG0)
- L4 Watchdog 1 (ALT_WDOG1)

⚫ In addition, all three types of interrupts triggered by watchdog timer timeout are enabled, and a console display is performed when these interrupts occur.
In addition, the following processing is performed in the interrupt callback routine of each watchdog timer.
- CPU Private Watchdog Timer ... Pending Clear & Console Display Only
- L4 Watchdog 0 ... Pending Clear & Console Display & COLD Reset Execution.

- L4 Watchdog 1 ... Pending Clear & Console Display & WARM Reset Execution.

Sample Function

The following is an overview of the sample function.
① sample_wdog_test_init();

→ It performs the following actions:

- Displays the reset manager's cause register value.
- Initialize the watchdog timer HWLib (alt_wdog_init).
- Display all initial watchdog timer settings.

- Change the watchdog timer settings for testing.
 CPU Private Watchdog Timer (ALT_WDOG_CPU)

 ->FREERUN mode (the timer continues to operate even after a timeout occurs)
 L4 Watchdog 0 (ALT_WDOG0)

 ->INT THEN RESET mode (Mode in which an interrupt occurs at the first timeout and WARM is reset at the second timeout)
 L4 Watchdog 1 (ALT_WDOG1)

 ->INT THEN RESET mode (Mode in which an interrupt occurs at the first timeout and WARM is reset at the second timeout)
 (* For details, please check the code of sample_wdog_test_init directly.)

- Displays all changed watchdog timer settings.

- Displays interrupt controller settings and set values.
② sample_wdog_test_main();

→ Runs the test program. Performs the following processing in an infinite loop.

- Changes the prescaler set value for the CPU Private Watchdog Timer at the time of change of DIPSW1 -4 for HPS.
Makes DIPSW1 MSB and DIPSW4 LSB, and applies the 4-bit value as it is to the set value.

- Resets the CPU Private Watchdog Timer at the time of press of PUSHSW1 for HPS.

- Resets L4 Watchdog 0 at the time of press of PUSHSW2 for HPS.
- Resets L4 Watchdog 1 at the time of press of PUSHSW3 for HPS.
- When PUSHSW0 for HPS is pressed, the infinite loop is ended (end of test program).

③ sample_wdog_test_uninit();
→ The watchdog timer non-initialization API function (alt_wdog_uninit()) is called.

Remarks For details, refer to sample_watchdog_readme.txt and sample_watchdog.c.

Intel ® SoC FPGA All-in-One Bare Metal Application Sample

Ver.22.1 / Rev.4 March 2023 Rev. 4 4 8 / 5 5 A LT I M A C o m p a n y, M A C N I C A , I n c .

 Supplementary Information

 How to add user commands to be executed in the Command mode

As explained in "5-2. Command mode," you can register user-created processes as commands in COMMANDS_LIST commands[] and execute

them.

① Place the source code (xxx.c) of the user you want to execute in the Top directory of this project.

② Add the following contents to the util/cmd.c file and save it.

(1) Add extern declarations for user command functions.

[Listing 10 -1] Add extern declarations for user command functions

(2) Add descriptions of user command functions to COMMANDS_LIST commands[].

[Listing 10 -2] User command functions are added to COMMANDS_LIST commands[].

extern int sample_dmac_test_cmd(char* options);

extern int sample_dma_mem_test_cmd(char* options);

extern int sample_cache_manage_test_cmd(char* options);

extern int sample_clkmgr_test_cmd(char* options);

extern int sample_ecc_test_cmd(char* options);

extern int sample_globaltmr_test_cmd(char* options);

extern int sample_gptmr_test_cmd(char* options);

extern int sample_intctrl_test_cmd(char* options);

extern int sample_time_measurement_test_cmd(char* options);

extern int sample_wdog_test_cmd(char* options);

Add extern declarations for user commands (functions).

*This example adds the sample programs in the examples

directory.

COMMANDS_LIST commands[] = {

{"menu," "Print of menu," cmd_menu},

{"mr," "mr <type:8/16/32> <addr(HEX)> ", cmd_mem_read},

{"mw," "mw <type:8/16/32> <addr(HEX)> <data(HEX)>," cmd_mem_write},

{"md," "md <type:8/16/32> <addr(HEX)> <size(HEX)>," cmd_mem_dump},

{"mf," "mf <type(0:inc/1:fixed> <data(HEX)> <addr(HEX)> <size(HEX)>," cmd_mem_fill},

{"dma," "dma <src(HEX)> <dst(HEX)> <size(HEX)> <bytes(1/2/4/8)>," sample_dmac_test_cmd},

{"dmamem," "HPS internal DMA (DMA-330) example program," sample_dma_mem_test_cmd},

{"cache," "Cache Management example program," sample_cache_manage_test_cmd},

{"clk," "Clock Manager example program," sample_clkmgr_test_cmd},

{"ecc," "ECC Management example program," sample_ecc_test_cmd},

{"gltmr," "Global Timer example program," sample_globaltmr_test_cmd},

{"gptmr," "General-Purpose Timer example program," sample_gptmr_test_cmd},

{"intctrl," "Interrupt Controller (mainly SGI) example program," sample_intctrl_test_cmd},

{"time," "Time measurement example program," sample_time_measurement_test_cmd},

{"wdog," "Watchdog timer (and reset manager) example program," sample_wdog_test_cmd},

 {"exit," "exit" ,cmd_exit},

 {0,0,cmd_dummy}

}; Adds a description of a user command (function)

Intel ® SoC FPGA All-in-One Bare Metal Application Sample

Ver.22.1 / Rev.4 March 2023 Rev. 4 4 9 / 5 5 A LT I M A C o m p a n y, M A C N I C A , I n c .

ALT-HWLib-All-In-One_v22.1_r○.○ Build the project again, turn off bit 0 of the DIP switch of your target board, and run the program in Command

mode. As shown below, the added user commands will be displayed in the menu and the program can be executed by entering the command.

[Figure 1] Added user commands are displayed in the menu10

+-<< Usage: Command and Switch Functions >>----------------------------------+

 SLIDESW #0 Select Operation Mode (ON:Switch/OFF:Command)

< Switch Mode >

 PUSH SW #0 Exit Test loop!!!

 PUSH SW #1 Function-A

 PUSH SW #2 Function-B

 PUSH SW #3 Function-C

 SLIDESW #1:3 .. Option 0~7

< Command Mode >

 menu : Print of menu

 mr : mr <type:8/16/32> <addr(HEX)>

 mw : mw <type:8/16/32> <addr(HEX)> <data(HEX)>

 md : md <type:8/16/32> <addr(HEX)> <size(HEX)>

 mf : mf <type(0:inc/1:fixed> <data(HEX)> <addr(HEX)> <size(HEX)>

 dma : dma <src(HEX)> <dst(HEX)> <size(HEX)> <bytes(1/2/4/8)>

 dmamem : HPS internal DMA (DMA-330) example program

 cache : Cache Management example program

 clk : Clock Manager example program

 ecc : ECC Management example program

 gltmr : Global Timer example program

 gptmr : General-Purpose Timer example program

 intctrl : Interrupt Controller (mainly SGI) example program

 time : Time measurement example program

 wdog : Watchdog timer (and reset manager) example program

 exit : Exit

 * Note: HEX Value does not need 0x

+--+

Enter Command Mode! <Press Enter key to continue>

Command:

User Commands Added

Intel ® SoC FPGA All-in-One Bare Metal Application Sample

Ver.22.1 / Rev.4 March 2023 Rev. 4 5 0 / 5 5 A LT I M A C o m p a n y, M A C N I C A , I n c .

 Directory/file structure of this sample

10-2-1. ALT-HWLib-All-In-One_v22.1_r○.○ directory (TOP directory of the project)

Table 10: File structure of the ALT-HWLib-All-In-One_v22.1_r○.○ directory

ALT-HWLib-All-In-One_v22.1_r○.○
Directory

Description

examples examples directory

linkerscripts linkerscripts directory

registers registers directory

target_board target_board directory

util util directory

config.mk Contains instructions for compiling

debug-hosted.ds
Debug script file for Cyclone V/Arria V
This file can be written to configure and automate debugging

debug-hosted_a10.ds
Debug script file for Arria10
This file can be used to configure and automate debugging.

GNU-Debug-A10-All-In-One-Sample.launch
Sample launcher file for Arria10
File for the startup configuration of the ARM DS debugger

GNU-Debug-A10-Attach.launch Attach launcher file for Arria10

GNU-Debug-CV-All-In-One-Sample.launch
Sample launcher file for Cyclone V/Arria V
File for the startup configuration of the ARM DS debugger

GNU-Debug-CV-Attach.launch Attach launcher files for Cyclone V/Arria V

Makefile Makefile used to build this Bare Metal sample project

sample_app.c Main C source code file for this Bare Metal sample application

sample_app_setting.c Configuration C source code file for this Bare Metal sample application

sample_app_setting.h Configuration header file for this Bare Metal sample application

sample_dmac.c DMA Test C source code files for this bare-metal sample application

Intel ® SoC FPGA All-in-One Bare Metal Application Sample

Ver.22.1 / Rev.4 March 2023 Rev. 4 5 1 / 5 5 A LT I M A C o m p a n y, M A C N I C A , I n c .

10-2-2. examples directory

Table 2 File Structure of the examples Directory10

examples Directory Description

readme.txt Text file describing how to use Examples

sample_cache_manage.c Cache management sample program using HWLib

sample_cache_manage_readme.txt sample_cache_manage.c sample readme text file

sample_clock_manager.c sample clock manager using HWLib

sample_clock_manager_readme.txt sample_clock_manager.c sample readme text file

sample_dma_mem.c DMA transfer sample program using HWLib

sample_dma_mem_readme.txt sample_dma_mem.c sample readme text file

sample_dmac.c Sample program using HPS DMA (DMA-330) using HWLib

sample_dmac_readme.txt sample_dmac.c sample readme text file

sample_ecc.c Error Correcting Code (henceforth, ECC) management sample program using HWLib

sample_ecc_readme.txt sample_ecc.c sample readme text file

sample_globaltmr.c global timer sample program using HWLib

sample_globaltmr_readme.txt sample_globaltmr.c sample readme text file

sample_gpio.c General Purpose I/O (hereafter, GPIO) sample program using HWLib

sample_gpio_readme.txt sample_gpio.c sample readme text file

sample_gptmr.c sample program for general-purpose timer using HWLib

sample_gptmr_readme.txt sample_gptmr.c sample readme text file

sample_interruptctrlSGI.c Sample Interrupt Controller (primarily SGI) Programs Using HWLib

sample_interruptctrlSGI_readme.txt sample_interruptctrlSGI.c sample readme text file

sample_time_measurement.c Sample Programs Implementing Time Measurement Using HWLib

sample_time_measurement_readme.txt sample_time_measurement.c sample readme text file

sample_watchdog.c Sample Watchdog Timer (and Reset Manager) Programs Using HWLib

sample_watchdog_readme.txt sample_watchdog.c sample readme text file

Intel ® SoC FPGA All-in-One Bare Metal Application Sample

Ver.22.1 / Rev.4 March 2023 Rev. 4 5 2 / 5 5 A LT I M A C o m p a n y, M A C N I C A , I n c .

10-2-3. linkerscripts directory

Table 3: linkerscripts directory file structure10

linkerscripts directory Description

arria10-dk-ram.ld
Linker script file for Arria 10 SoC for GNU C Compiler (and later, GCC)
Used for linking programs (memory allocation) in this bare metal sample.

cycloneV-dk-ram.ld
Linker script file for Cyclone V/Arria V SoC for GCC
Used for program linking (memory allocation) in this bare metal sample

soc_a10-scatter.scat
Linker script file for Arria 10 SoC for ARM C Compiler (hereafter, ARMCC)
Used for program linking (memory allocation) in this bare metal sample

soc_cv_av-scatter.scat
Linker script file for Cyclone V/Arria V SoC for ARMCC
Used for program linking (memory allocation) in this bare metal sample

10-2-4. registers/soc_a10 directory

Table 4: File structure of registers/soc_a10 directory10

registers/soc_a10 directory Description

soc_a10_hps_addon_dma330.tcf
Register definition for DMA Controller (DMA-330) for Arria 10 SoC
Configuration file for adding display items to register view of DS-5

soc_a10_hps_addon_mpul2_l2c310.tcf
Register definition for L2 Cache Controller (L2C-310) for Arria 10 SoC
Configuration file for adding display items to register view of DS-5

soc_a10_hps_addon_mpuscu.tcf
Register definition for Cortex-A9 MPCore Internal Peripherals for Arria 10 SoC
This configuration file is used to add items to the register view of the DS-5.

10-2-5. registers/soc_cv_av directory

Table 10: File structure of the registers/soc_cv_av directory

registers/soc_cv_av directory Description

soc_cv_av_hps_addon_dma330.tcf
Register definition for DMA Controller (DMA-330) for Cyclone V/Arria V SoC
Configuration file for adding display items to the DS-5 register view

soc_cv_av_hps_addon_mpul2_l2c310.tcf
Register definition for L2 Cache Controller (L2C-310) for Cyclone V/Arria V SoC
Configuration file for adding display items to the DS-5 register view

soc_cv_av_hps_addon_mpuscu.tcf
Register definition for Cortex-A9 MPCore embedded peripherals for Cyclone V/Arria V SoC
Configuration file for adding display items to the DS-5 register view

10-2-6. target_board/a10socdk directory

[Table 5] File structure of the target_board/a10socdk directory10

target_board/a10socdk directory Description

ghrd_10as066n2.sof Arria 10 SoC development board .sof files

ghrd_10as066n2.sopcinfo .sopcinfo files for Arria 10 SoC development board

hps_system.h System header files (Header files generated from .sopcinfo above)

u-boot-spl preloader files for Arria 10 SoC development board

u-boot-spl.dtb preloader device tree for Arria 10 SoC development board

u-boot-with-spl.sfp
Flash writing bootloader for Arria 10 SoC development board
(4 Preloader and 1 Ubuntu)

Intel ® SoC FPGA All-in-One Bare Metal Application Sample

Ver.22.1 / Rev.4 March 2023 Rev. 4 5 3 / 5 5 A LT I M A C o m p a n y, M A C N I C A , I n c .

10-2-7. target_board/atlas directory

Table 6: File structure of target_board/atlas directory10

target_board/atlas directory Description

soc_system.sof .sof file for Atlas SoC development board

soc_system.sopcinfo .sopcinfo file for Atlas SoC development board

hps_system.h System Header Files (Header files generated from .sopcinfo above)

u-boot-spl preloader files for Atlas SoC development boards

u-boot-spl.dtb preloader device tree for Atlas SoC development boards

u-boot-with-spl.sfp
Flash writing boot loader for Atlas SoC development boards
(4 Preloader and 1 Uboot)

10-2-8. target_board/c5socdk directory

Table 10: File structure of target_board/c5socdk directory

target_board/c5socdk directory Description

soc_system.sof .sof files for the Cyclone V SoC development board

soc_system.sopcinfo .sopcinfo files for the Cyclone V SoC development board

hps_system.h System header files (Header files generated from .sopcinfo above)

u-boot-spl preloader files for the Cyclone V SoC development board

u-boot-spl.dtb preloader Device Tree for Cyclone V SoC Development Board

u-boot-with-spl.sfp
Flash Writing Bootloader for Cyclone V SoC Development Board
(consists of Preloader x4 and Boot x 1)

10-2-9. target_board/de10nano Directory

[Table 7] File Structure of target_board/de10nano Directory10

target_board/de10nano Directory Description

soc_system.sof .sof files for DE10-Nano development board

soc_system.sopcinfo .sopcinfo files for DE10-Nano development board

hps_system.h System header files (Header files generated from .sopcinfo above)

u-boot-spl preloader files for DE10-Nano development board

u-boot-spl.dtb Device tree for preloader files for DE10-Nano development board

u-boot-with-spl.sfp
Flash writing bootloader for the DE10 Nano development board
(4 Preloader and 1 Uboot)

Intel ® SoC FPGA All-in-One Bare Metal Application Sample

Ver.22.1 / Rev.4 March 2023 Rev. 4 5 4 / 5 5 A LT I M A C o m p a n y, M A C N I C A , I n c .

10-2-10. target_board/sodia directory

[Table 8] File structure of the target_board/sodia directory10

target_board/sodia directory Description

soc_system.sof Sodia development board .sof file

soc_system.sopcinfo Sodia development board .sopcinfo file

hps_system.h System header files (Header files generated from .sopcinfo above)

u-boot-spl preloader files for Sodia development boards

u-boot-spl.dtb Device tree for preloader files for Sodia development boards

u-boot-with-spl.sfp
Flash writing boot loader for Sodia development boards
(4 Preloader and 1 Uboot)

10-2-11. util directory

[Table 9 File structure of the util directory10

util directory Description

hwlib HWLib directory

nios_hal Nios® II Hardware Abstraction Layer (Since, Nios HAL) directory

cmd.c
Command utility C Source code file
You can execute a process by adding it to COMMANDS_LIST commands[].

cmd.h Command Utility Header File

l2mmu_setting.c L2MMU Configuration Utility C Source Code File

l2mmu_setting.h L2MMU Configuration Utility Header File

mem_util.c Memory Utility C Source Code File

mem_util.h Memory Utility Header File

usleep_soc.c usleep utility C source code file

util_interrupt_log.c Interrupt logging utility C source code file

util_interrupt_log.h Interrupt logging utility header file

util_time_measurement.c Timing utility C source code file

util_time_measurement.h Timing utility header file

Intel ® SoC FPGA All-in-One Bare Metal Application Sample

Ve r. 2 2 . 1 / R e v. 4 M a r c h 2 0 2 3 5 5 / 5 5 A LT I M A C o m p a n y , M A C N I C A , I n c .

DISCLAIMER AND PRECAUTIONS

If you have obtained this document from our company, please read the following precautions before using it.

1. This document is not for sale. Resale and reproduction without permission are prohibited.

2. This document is subject to change without notice.

3. We have made every effort to prepare this document. However, if you notice any unclear points, errors, omissions, etc., please contact the distributor from whom you obtained this document.

Contact Form for Macnica Semiconductor Business

4. Please note that we are not responsible for the effects of operation of the circuits, technologies, and programs described in this document.

5. This document is a supplementary document for using the product. When using the product, please also use the English version of the document issued by the manufacturer.

Revision History

Revision years Overview

1 March 2019 First Edition

3 May 2021 Fixed for version 20.1 (also updated document templates)

- Support for tooling environment changes (DS-5 to Arm DS)

- Removed MMU sample (sample_mmu.c) because MMU setup has been implemented in a

common process for all samples

- Removed Helio board support

4 March 2023 Fixed for v22.1

- Improved how Example projects are enabled (specified in config.mk)

- New support for ARMCC6 as ARMCC5 is deprecated.

- Added instructions for not installing SoC EDS.

https://www.macnica.co.jp/business/semiconductor/support/contact/?product=Intel%20Programmable%20Solutions%20Group

