

Quartus II はじめてガイド TimeQuest によるタイミング解析の方法 ver.15

2015年11月 Rev.1

ELSENA,Inc.

Quartus II はじめてガイド

TimeQuest によるタイミング解析の方法

<u>目次</u>

1. はじめに
2. コンパイル・レポートの確認
2-1. 各フォルダの概要
2-2. サマリー・レポートの概要
2-3. 詳細レポート(パス・スラック・レポート)の生成7
3. 詳細レポート
3-1. 詳細レポートの概要9
3-2. パス・サマリー
3-3. パス・スラック・レポート11
3-3-1. Path Summary タブ11
3-3-2. Statistics タブ12
3-3-3. Data Path タブ13
3-3-4. Waveform タブ14
3-3-5. Extra Fitter Information タブ15
4. テクニカル・ビューワの活用16
4-1. Chip Planner
4-2. Technology Map Viewer
4-3. Resource Property Editor
5. タイミング・エラー改善のための手法18
改版履歴

1. <u>はじめに</u>

この「Quartus II はじめてガイド」シリーズは、Quartus® II 開発ソフトウェアを初めてご利用になるユーザ向けの 資料です。

この資料は、FPGA/CPLD のデザイン(回路)に対して与えたタイミング制約用ファイル(SDC ファイル)を Quartus II に登録してコンパイルした時に、配置配線結果がタイミング制約(要求)を満たしているのか、それとも 満たすことができなかったのかを確認する方法について説明しています。上図の開発フローの中の「タイミングを 検証する」で必要となることが、主に書かれています。

元々は ASIC 業界の標準フォーマットになっている Synopsys Design Constraints (SDC) ファイルを FPGA/CPLD のタイミング制約に使用することで、Quartus II の Fitter(配置配線)で目標(ガイド)として参照する だけでなく、TimeQuest Timing Analyzer による高性能なタイミング解析にも使用されます。

大まかな解析ステップを示すと、以下の通りとなります。

- 1. Quartus II のコンパイル・レポートを確認(タイミング・エラーの有無を確認) <2-2 章>
- 2. TimeQuest で詳細レポートを生成<2-3 章>
- 3. TimeQuest で詳細レポートの解析(タイミング・エラーとなっているパスの遅延の詳細を確認) <3 章>

この資料では、TimeQuest を使用した詳細パスのタイミング解析結果の確認方法まで説明しています。しかし、 タイミング満たせていないパスをどのように改善するかはケースによって異なるので、回避方法の詳細については 説明していません。

- 対象のツールおよびバージョン
 - Quartus II v15.0

🔥 ALTIMA

2. コンパイル・レポートの確認

タイミング制約用の SDC ファイルが完成したら、Quartus II で SDC ファイルの登録とコンパイルを実行します。 SDC ファイルの作成方法や登録については、本資料を入手したサイト内から以下の資料を入手してご覧ください。

Quartus II はじめてガイド – TimeQuest によるタイミング制約の方法

コンパイルが終わったら、コンパイル・レポートを確認してください。コンパイル・レポートではフェーズ毎に詳細 なコンパイル結果を確認することができますが、タイミング解析についてはサマリー情報のみ確認できます。配置 配線した結果がタイミング制約を満たせないなどのタイミング違反があった場合は、赤字で表示されます。コンパ イル後には、まず赤字の有無を確認してください。

2-1. 各フォルダの概要

コンパイル・レポートの TimeQuest Timing Analyzer フォルダには、カテゴリごとにレポートが格納されています。 赤字で表示されている項目は、タイミング制約に対して満足していないパス、つまりタイミング・エラーのパスが含まれていることを示しています。

また、複数あるタイミング・モデルごとに詳細なレポートを生成させることもできます。タイミング・モデルの数は、 デバイスやプロセスによって異なります。Assignment メニュー \Rightarrow Settings \Rightarrow Compilation Process Settings カテ ゴリの Enable multicorner support for TimeQuest and EDA Netlist writer にチェックを入れてコンパイルすると、各タ イミング・モデルにおけるサマリー・レポートが生成されます。

General	Compilation Process Settings						
Libraries	Specify Compilation Process options.						
 IP Settings IP Catalog Search Locations 	Parallel compilation						
Design Templates Over this Settings and Conditions Over this Settings and Conditions Over this Setting from Options dialog box - Use all available processors							
Voltage	Use all available processors						
Compilation Process Settings	⊘ Maximum processors allowed: 1 ▼						
Incremental Compilation	Use smart compilation	☑ Preserve fewer node names to save disk space					
Design Entry/Synthesis	Run Assembler during compilation	Run I/O assignment analysis before compilation					
Formal Verification	Run Netlist Viewers preprocessing during compilation						
Board-Level Compiler Settings	Enable multicorner support for TimeQuest and EDA Net	tlist Writer					

もしコンパイル後にこのオプションを適用させてレポート生成させたい場合は、オプション設定後に TimeQuest Timing Analyzer プロセスを単独で実行してください(Processing メニュー \Rightarrow Start \Rightarrow Start TimeQuest Timing Analyzer)。フル・コンパイルすることなく、最終の配置配線結果からタイミング解析してレポートを生成してくれます。

TimeQuest Timing Analyzer フォルダの各カテゴリの概要は、以下の通りです。

2-2. サマリー・レポートの概要

SDC ファイルにタイミング制約漏れがなく、かつ適切な制約ができていることを前提とした時に、主にユーザは コンパイル・レポートの TimeQuest Timing Analyzer フォルダに生成された各タイミング・モデルのタイミング解析 結果(サマリー・レポート)において、タイミング・エラーがないかを確認します。

タイミング・モデルは複数存在するため、サマリー・レポートも複数フォルダに生成されます。それは、半導体デバイスがプロセス<Process>(製造のばらつき)や電圧<Voltage>、温度<Temperature>によって、回路の遅延が変動するためです。この 3 つの組み合わせを PVT 条件やデバイスの動作条件と呼んだりします。一般的に、 電圧が高くて温度が低いほど遅延は小さくなり、高速で動作します。最も速い動作条件を「Fast コーナー」、最も遅い動作条件を「Slow コーナー」と呼びます。タイミングの解析は、少なくてもこの 2 つの動作条件で行います。

"少なくても 2 つの動作条件"と書いたのは、デバイスのベンダーによって考え方に違いがあるからです。例え ば、アルテラ社の FPGA の場合、90-nm プロセスまでの FPGA は 2 つの動作条件で解析しますが、 40/60/65-nm プロセスの FPGA では 3 つ、28-nm プロセスの FPGA では 4 つの動作条件で解析します。一般 的には、Fast/Slow コーナーの 2 つですべての条件をカバーできるように、タイミング・モデルに余裕を持たせます。 動作条件を追加すれば、更に正確な解析ができるため、2 つ以上の動作条件を使う場合があります。つまり、ユー ザはすべてのタイミングを満足したかどうかを確認する必要があります。

ここから、Slow コーナーのサマリー・レポートを例に、各フォルダを説明します。

ここで、タイミング・エラーになっている項目に着目します。

Setup Summary をクリックすると、Slow コーナーにおける各クロック・ドメインのセットアップ解析のサマリー・レポートが表示されます。それぞれの列のラベルは、「Clock」と「Slack」、「End Point TNS」です。

Slov	v 1100mV 85C Model Setup Summary		
	Clock	Slack	End Point TNS
1	clock_in_50mhz	-5.723	-88.882
2	pll:pll_inst pll_0002:pll_inst altera_pll:altera_pll_i outclk_wire[0]	-2.471	-45.833

「Clock」列には、クロック・ドメインの名前が表示されます。

「Slack」列には、クロック・ドメインの最小スラックが表示されます。この値がマイナスの時は赤字で表示され、タイミングを満たしていないパスがあることを示します。

「End Point TNS」の TNS は "Total Negative Slack"の略で、クロック・ドメイン内のマイナスのスラック値を合計 した値です。この値が大きいほど、そのクロック・ドメインにはタイミングを満たさないパスが数多く残っていて、タイ ミング収束が難しいと考えられます。

更に詳しい解析をするには、タイミングを満たさなかったパスがどのように構成されているのかを確認するため、 詳細レポート(パス・スラック・レポート)を生成します。

2-3. 詳細レポート(パス・スラック・レポート)の生成

サマリー・レポートからさらに詳しい解析をするために、詳細レポート(パス・スラック・レポート)を生成します。な お、詳細レポートを生成する方法は幾つかあります。例えば、Quartus II から別途 TimeQuest Timing Analyzer を 起動して目的のタイミング・モデルを選択し、再度サマリー・レポートを生成してから詳細レポートを生成させるフロ ーがアルテラ社のドキュメントなどでも紹介されていますが、本資料では手軽に詳細レポートを生成させる方法で 説明します。

コンパイル・レポート内の TimeQuest Timing Analyzer フォルダから詳細の解析をしたいタイミング・モデルのフ オルダを展開して、目的のパラメータのサマリー・レポートを選択します。その後、詳細に確認したいクロック・ドメイ ンを選択して、右クリックします。表示されたプルダウン・メニューから Report Timing... (In TimeQuest UI) を選択し ます。

自動的に TimeQuest が起動してバックグラウンドで指定したタイミング・モデルのタイミング用ネットリスト (Post-fit)が生成され、登録した SDC ファイルを読み込み、指定した内容が入力された状態で Report Timing ダ イアログ・ボックスが表示されます。このまま Report Timing をクリックしても詳細なレポートが生成されますが、必要な項目を追加することで表示するパスを絞り込むことができます。 Clocks

必要に応じて、解析したいパスの送信クロック(From Clock)と受信クロック(To Clock)を指定します。サマリ ー・レポートからのリンクで開いた場合は、受信クロッ ク(To Clock)が入力された状態になっています。

Targets

必要に応じて、解析したいパスの始点(From)と通過 点(Through)、終点(To)を指定します。

Analysis

セットアップ/ホールド/リカバリー/リムーバルのいず れかを選択します。サマリー・レポートからのリンクで 開いた場合は、セットアップが選択された状態になっ ています。

Paths

レポートに表示するパスの数や条件を指定します。 デフォルトは 10 パスです。スラックがある値より小さ いパスを表示するといった指定もできます。

Output

表示するレポートの詳細レベルを指定します。また、 レポート表示のパネル名を指定したり、レポートの内 容をテキストのファイルに出力することもできます。

🗓 Report Timing	g 💽
Clocks	
From clock:	•
To clock:	clock_in_50mhz 🗸
Targets	
From:	
Theorem	
Inrougn:	
To:	
Analysis type	Paths
Setup	Report number of paths: 10
Mold	Maximum number of paths per endpoint:
Recovery	Maximum slack limit: ns
Removal	Pairs only
Output	
Detail level:	Full path Set Default
	Summary Path only
Report panel	Path and dock name: Eul path
File name:	
	File options
	Overwrite Append Open
Console	
Tcl command: c in	50mbz } -setup -poaths 10 -detail full path -papel pame (Setup: clock in 50mbz)
-0	Report Timing Close Help
	4

表示するレポートの条件などを入力した状態で Report Timing をクリックすると、条件に合致した詳細レポート (パス・スラック・レポート)が表示されます。

3. 詳細レポート

TimeQuest Timing Analyzer レポートの各タイミング・モデルのサマリーから、Report Timing をクリックして詳細 レポートを生成したら、パス・スラック・レポートを解析します。この詳細レポートで、タイミング要求を満たせなかっ たパスがどのように構成されているのかを確認して、その要因を明確にします。

3-1. 詳細レポートの概要

Report Timing により生成したレポートは、大きく 2 画面で構成されています。

Setup:	clock_in_50r	nhz									0
Comma	and Info	Summary of	Paths								
	Slack F	rom Node	To Node			Launch Clock	Latch Clock	Relationship	Clock Skew	Data Delay	
1 -5	.723 dff	inst[2]	q[2]	pll:pll_	inst pll_0002	:pll_inst altera_pll:altera_pll_i outclk_wire[0]	clock_in_50mhz	6.668	-8.348	2.943	
2 -5	.722 dff	inst[5]	q[5]	pl:pl	inst pll_0002	:pll_inst altera_pll:altera_pll_i outclk_wire[0]	clock_in_50mhz	6.668	-8.418	2.872	
3 -5	.717 dff	_inst[13]	q[13]	pl:pl_						2.690	1
4 -5	.690 dff	_inst[4]	q[4]	pll:pll_	- 指定	トークロック・ドメインにおける	50-26.2=	シックのパス	·#7U-	2.893	
5 -5	.655 dff	_inst[15]	q[15]	pll:pll_	1876			///////////////////////////////////////		2.858	
6 -5	.654 dff	_inst[11]	q[11]	pll:pll_	inst pll_0002	:pll_inst altera_pll:altera_pll_i outclk_wire[0]	clock_in_50mhz	6.668	-8.361	2.861	
Path #	1: Setup sl	ack is -5 70	2 (JIOL AT	50)			Path #1: Setup	slack is -5 722 (
Sath S	ummary	Statistics	Data Path	Wav	eform Ex	tra Fitter Information	Path Summary	Statistics Da	ta Path Wave	form Extra Fitt	ter Information
Data A	rrival Path					K					
	Total	Incr	RF	Туре	Fanout	Location					
1	13.332	13.332				l. l.				18.9 ns	
2 4	21.680	8.348					unch Clock Li	aunch			
1	13.33	2 0.000				同じタブ項目	andri Crock	1			
2	13.33	2 0.000			1	PIN_L8			6.668 ns		
3	13.33	2 0.000	RR	IC	1	IOIBUF_X15_Y61_N1 c	Setup Relation:	ship			
4	14.22	2 0.890	RR	CELL	1	IOIBUF_X15_Y61_N1 c				r	
5	15.21	1 0.989	RR	IC	1	PLLREFCLKSELECT_X0_Y20_N0 p	Latch Clock			Latch	
6	15.54	4 0.333	RR	CELL	1	PLLREFCLKSELECT_X0_Y20_N0 F					
۲ ۲	10 04	4 0.000		10	10		Data Arrival				X
Data R	equired Pa	ath					1		0.040	2	/ (
	Total	Incr	RF	Туре	Fanout	Location	Clock Delay		0.040		
1	20.000	20.000				late	H I				2.943 ps
2 4	20.000	0.000				doc	Data Delay				2.343 118
1	20.00	0 0.000	R			doc	6				
3	19.900	-0.100				· · · · · · · · · · · · · · · · · · ·		1			-5.723 ns
4	18.900	-1.000	F	oExt		上部ウィンドウで指定した	パスの詳細を	表示する			
						パス・スラック	·レポート	10107 0	_		
•			111			•	Output Delay			-1.0 ns	

上部ウィンドウでパスをクリック(指定)すると、下部ウィンドウが連動して指定パスの詳細を表示する仕組みに なっています。下部ウィンドウは左右に分割されているので、好みに応じて同時に別タブの情報を見ることができ ます。

3-2. パス・サマリー

クロック・ドメインにおけるワースト・スラックのパス・サマリーのウィンドウ(詳細レポートの上部)では、以下の情報が確認できます。この例は、以下の例2が該当します。

ソース	とディスティ	ネーションのノード		ソースと	ディスティネー	ーションのクロック			
50mbz				/					
_JUIII 12	of Dati					7			
Erem Made	TaNada		1 an and	Clask		Latab Clash	Deletienshie	Clark Shaw	Data Dalau
dff_inst[2]	10 NODE	ollioll instial, 0002 all i	Launch	ollialtera oll il	outelk wire[0]	clock in 50mbz	6 668	-8 348	2 943
dff_inst[2]	a[5]	pli:pli_inst[pli_0002:pli_	inst laltera	pliatera pli i	outclk_wire[0]	clock in 50mhz	6.668	-8.418	2.872
dff_inst[13]	q[13]	pll:pll_inst pll_0002:pll_i	inst altera	pll:altera_pll_i	outclk_wire[0]	clock_in_50mhz	6.668	-8.595	2.690
dff_inst[4]	q[4]	pll:pll_inst pll_0002:pll_i	inst altera	pll:altera_pll_i	outclk_wire[0]	clock_in_50mhz	6.668	-8.365	2.893
dff_inst[15]	q[15]	pll:pll_inst pll_0002:pll_i	inst altera	_pll:altera_pll_i	outdk_wire[0]	clock_in_50mhz	6.668	-8.365	2.858
dff_inst[11]	q[11]	pll:pll_inst pll_0002:pll_i	inst altera	_pll:altera_pll_i	outclk_wire[0]	clock_in_50mhz	6.668	-8.361	2.861
内部レジス	<夕間のパス ―― ―	reg レ レ ソース・クロック (Launch Clock)	(From No	pde) 組み合材 回路		reg2 $P = Q$ $P = Q$ $P = P$ P $P = P$ P $P = P$ P $P = P$ P P P P P P P P P	שיב		
)デバイスマ (FPGA 出	をまたぐレジ カピン)	スタ間のパス reg リース・クロック	Y-Z· (From N FPGA	ノード ode)		^k ーション・ノード b Node) reg2 D Q > ティネーション・ク (Latch Clock)			
	ソース 50mhz Summary From Node dff_inst[5] dff_inst[1] dff_inst[1] の部レジス) デバイスス (FPGA 出	ソースとディスティ 50mhz Summery of Path From Node To Node dff_inst[2] q[2] dff_inst[13] q[13] dff_inst[13] q[15] dff_inst[11] q[11] 内部レジス夕間のパス) デバイスをまたぐレジ (FPGA 出力ピン)	ソースとディスティネーションのノード 50mhz Summery of Path From Node To Node ffi_inst[2] q[2] pli:pl_inst[pl_0002:pl_dff_inst[s] dff_inst[13] q[13] pli:pl_inst[pl_0002:pl_dff_inst[s] dff_inst[13] q[15] pli:pl_inst[pl_0002:pl_dff_inst[s] dff_inst[13] q[13] pli:pl_inst[pl_0002:pl_dff_inst[s] dff_inst[13] q[15] pli:pl_inst[pl_0002:pl_dff_dff_inst[s] dff_inst[11] q[11] pli:pl_inst[s] dff_inst[11] q[11] pli:pl_inst[s] y-ス・クロック (Launch Clock) 0 デバイスをまたぐレジスタ間のパス (FPGA 出力ピン)	ソースとディスティネーションのノード 50mhz Summery of Path From Node To Node dff_inst[2] q[2] pl:pli_inst[pl_0002:pl_inst]atera dff_inst[4] q[4] pl:pl_inst[pl_0002:pl_inst]atera dff_inst[15] q[15] pl:pl_inst[pl_0002:pl_inst]atera dff_inst[10] q[11] pl:pl_inst[pl_0002:pl_inst]atera dff_inst[11] q[11] pl:pl_inst[pl_0002:pl_inst]atera dff_inst[11] q[11] pl:pl_inst[pl_0002:pl_inst]atera dff_inst[11] q[11] pl:pl_inst[pl_0002:pl_inst]atera vg vg vg vg	ソースとディスティネーションのノード ソースと 50mhz Summery of Path Launch Clock ff jnst[2] q[2] plipli inst pli_0002:pli_inst jaltera_pli altera pli alt	ソースとディスティネーションのノード ソースとディスティネー Sommery of Path Launch Clock Iff inst[5] Q[2] pt:pli_inst[pl_0002:pl_inst]altera_pl_ialtera_pl_ioutck, wire[0] dff inst[3] q[13] pl:pli_inst[pl_0002:pl_inst]altera_pl_ialtera_pl_ioutck, wire[0] dff inst[3] q[13] pl:pli_inst[pl_0002:pl_inst]altera_pl_ialtera_pl_ioutck, wire[0] dff inst[3] q[13] pl:pli_inst[pl_0002:pl_inst]altera_pl_ialtera_pl_ioutck, wire[0] dff inst[1] q[11] pl:pli_inst[pl_0002:pl_inst]altera_pl_ialtera_pl_ioutck, wire[0] dff inst[1] q[11] pl:pli_inst[pl_0002:pl_inst]altera_pl_ioutck, wire[0] dff inst[3] q[13] pl:pli_inst[pl_0002:pl_inst]altera_pl_ioutck, wire[0] dff net(3) q[13] pl:pli_inst[pl_0002:pl_inst]altera_pl_ioutck, wire[0] dff net(3) q[14] ql_inst[pl_01] ql_inst[pl_01] ql_inst[pl_01]	ソースとディスティネーションのノード ソースとディスティネーションのクロック Somar Lath Clock Summery of Path Lath Clock From Node To Node To Node If just[] q[3] pipul_instipil_0002pil_instalatera_pil_joutide, wre[0] clock_in_Somar dff_inst[] q[3] pipul_instipil_0002pil_instalatera_pil_joutide, wre[0] clock_in_Somar dff_inst[] q[1] pipul_instipil_0002pil_instalatera_pil_joutide, wre[0] clock_in_Somar dff gff gff gff gff dff notice Tr(ATFrA-visur-V-F) Tr(ATFrA-visur-V-F) (Tron Node) Tr(ATFrA-visur-V) (Latch Clock) dff gff gff gff dff notice Tr(ATFrA-visur-V) (Latch Clock) Tr(ATFrA-visur-V) (Internet Clock) Tr(ATFrA-visur-V) (Internet Clock) Tr(ATFrA-	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	y-zk±r(zz+rk-vsz)v0/rK y-zk±r(zz+rk-vsz)v0/9Dy/ Some Land Ood Land Ood Some Some Land Ood Land Ood Some filmustion Land Ood Land Ood Some filmustion Land Ood Land Ood Land Ood Some filmustion Land Ood Land Ood Land Ood Some filmustion Older Some Editionation Oods, p. Some 6.668 4.348 filmustion Older, p. Some C.668 4.348 6.668 4.355 filmustion Ood (odd, p. Some C.668 4.355 6.668 4.351 filmustion Filmustion Codd, p. Some 6.668 4.351 pishuiszaghilon / sz Filmustion Filmustion Codd, p. Some 6.668 4.351 pishuiszaghilon / sz Filmustion Filmustion Filmustion Filmustion Filmustion Filmustion filmustion Filmustion Filmustion Filmustion Filmustion Filmustion Filmustion filmustion Filmusti Filmustion Fi

スラック値(単位:ns)は、SDC 制約に対してのマージンです。マイナス値の場合は、期待値(制約値)に対してどのくらい不足しているかを示します。

例えば1行目は、以下のように読み取ります。

<u>ソース・ノード(送信ノード)の"dff_inst2[2](レジスタ)"</u>から<u>ディスティネーション・ノード(受信ノード)"q[2](出力</u> ピン)に接続している対向デバイス(後段のデバイス)の入力レジスタ"までは、それぞれ SDC で定義したクロッ ク"pll:pll_inst/pll_0002:pll_inst/altera_pll:altera_pll_i/outclk_wire[0]"(PLL 出力クロック)と"clock_in_50mhz"でドラ イブされており、そのノード間の遅延は、SDC で制約した制約値に対して 5.723ns 不足している

では、このノード間はどのような経路により制約値を満足できないのかを確認するため、パス・スラック・レポート を解析します。

3-3. パス・スラック・レポート

詳細レポートの下部ウィンドウにあるパス・スラック・レポートは、左右に分割され、同じタブが用意されています。 同時に別タブの情報を見ることができます。

Path	#1: Setup sl	ack is -5.72	(VIOLA	red)				Path #1: Setup s	lack is -5.7	23 (VIOLATE	D)	
Pat	Summary	Statistics	Data Pat	n Wav	eform E	Extra Fitter Information		Path Summary	Statistics	Data Path	Waveform	Extra Fitter Information
Data	Arrival Path											
	Total	Incr	RF	Туре	Fanout	Location	*					
1	13.332	13.332					k					18.9 ns
2	▲ 21.680	8.348					c =	Launah Clook La	unch			
1	13.33	2 0.000					5	Launch Clock				
2	13.33	2 0.000			1	PIN_L8	c			6	668 no	
3	13.33	2 0.000	RR	IC	1	IOIBUF_X15_Y61_N1	c	Setup Relations	hip		000 110	
4	14.22	2 0.890	RR	CELL	1	IOIBUF_X15_Y61_N1	c					
5	15.21	1 0.989	RR	IC	1	PLLREFCLKSELECT_X0_Y20_N0	F	Latch Clock				Latch
6	15.54	4 0.333	RR	CELL	1	PLLREFCLKSELECT_X0_Y20_N0	F_					
7	10 04	4 0.000	nn	10	10	EDACTIONALDIT VO V14 NO		Data Arrival				
							r	baca mi roar				
Data	Required Pa	th									8.348 ns	
	Total	Incr	RF	Туре	Fanout	Location		Clock Delay				*
1	20.000	20.000					latch					
2	a 20.000	0.000					clock	Data Delay				
1	20.00	0.000	R				clock					
3	19.900	-0.100					clock	Slack				-5.723 (
4	18.900	-1.000	F	oExt	0	PIN_V10	q[2]					
								Data Deguined				V
								Data Required				
												-1.0 ns
							- F	Output Delay				<

タイミング・エラーを起こしているパスを改善するため、ユーザはこれらの情報から現状(要因)を把握する必要 があります。各タブの概要を紹介します。

3-3-1. Path Summary タブ

パス・サマリーで選択した行(ノード間)におけるスラック値とパスのサマリーを表示しています。

Pa	ath Summary Statistic		Data Path	Waveform	Extra Fitter Information						
Property		rty	Value								
1	From Node	d	dff_inst[2]								
2	To Node	q	[2]								
3	Launch Clock	; pl	pll:pll_inst pll_0002:pll_inst altera_pll:altera_pll_i outclk_wire[0]								
4	Latch Clock	d	clock_in_50mhz								
5	Data Arrival	Time 2	24.623								
6	Data Require	d Time 1	18.900								
7	Slack	-5	-5.723 (VIOLATED)								

Data Arrival Time(データ到達時間)とは、クロック・ソースの送信エッジから送信レジスタを通って受信レジスタ にデータが到達するまでの時間のことです。これは、送信レジスタまでのクロック遅延と送信レジスタの遅延、受信 レジスタまでのデータ遅延の合計です。

Data Required Time(データ要求時間)とは、受信レジスタが正しくデータを受け取るために、受信レジスタにデータが到達しておくべき時間のことです。

Slack は SDC 制約に対して、実際の回路が持つタイミングのマージンのことです。以下の式により算出され、 回路内のすべてのパスに対してスラックがプラス値になれば、その回路はタイミング要求を満たして正しく動作す ることを示します。

Setup Slack = Data Required Time (Setup) - Data Arrival Time

Hold Slack = Data Arrival Time - Data Required Time (Hold)

タイミング解析をするには、まず用語と考え方を理解する必要があります。本資料では、用語と考え方の説明を省略しています。詳細は、本資料を入手したサイト内から以下の資料を入手してご覧ください。

TimeQuest ~タイミング解析の用語と考え方~

3-3-2. Statistics タブ

パス・サマリーで選択した行(ノード間)におけるパス遅延の統計を表示しています。

Pat	Path Summary Statistics		Data Path	Waveform	Extra F	itter Information			
		Property		Value	Count	Total Delay	% of Total	Min	Max
1	1 Setup Relationship								
2	Clock	Skew		-8.348					
3	Data I	Delay		2.943					
4	Numb	er of Logic Levels	1		0				
5	Physic	al Delays:							
1	4 A	rrival Path							
1		Clock							
1		IC			6	3.960	47	0.000	2.208
2		Cell			6	4.388	53	0.179	1.738
2		🖉 Data							
1		IC			1	0.000	0	0.000	0.000
2		Cell			3	2.943	100	0.000	2.351
3		uTco			1	0.000	0	0.000	0.000
2	🔺 R	equired Path							
1		Clock							
1		Clock Netv	vork (Lumped)		1	0.000		0.000	0.000

Arrival Path および Required Path は、Data Arrival Path と Data Required Path のクロックとデータの内訳を表しています。

また、IC (Inter Connect) は、内部配線の遅延の合計を表しています。Cell は、内部セル(ピンやロジック・エレメントなど配線以外の部分)の遅延の合計を表しています。uTco は、内部レジスタの出力遅延(Clock-to-Output Time / Tco)です。

3-3-3. Data Path タブ

パス・サマリーで選択した行(ノード)におけるパス遅延の詳細(経路)を表示いています。ユーザはこの Data Path タブをメインに検証します。

画面は Data Arrival Path と Data Required Path に分かれていて、"データ到達時間"と"データ要求時間"のパ スを表示しています。

以下は、Report Timing の詳細レベル(Detail Level)に Full Path を選択した場合のパス・スラック・レポートです。

その他、各列では以下のような内容が確認できます。

Total	ノードまでの遅延時間の合計								
Incr	ノードまでの遅延時間	ノードまでの遅延時間							
RF	信号の立ち上がり(Ris	se)、立ち下がり(Fall)のどちらを解析したパスかを示します							
Туре	ノードのタイプを示しま	ノードのタイプを示します							
	CELL	論理セル							
	IC	配線(Inter Connect)							
	COMP	PLL の位相補正値							
	uTco/uTsu/uTh	レジスタの出力遅延/セットアップ時間/ホールド時間							
	iExt/oExt	入力/出力の制約設定値							
Fanout	ノードのファンアウト数	I.							
Location	ノードの配置された位								
Element	ノードの名前								

3-3-4. Waveform タブ

パス・サマリーで選択した行(ノード)における Data Path タブの情報をグラフィカルに波形表示しています。ここ にはデータ到達時間やデータ要求時間、スラックの関係が波形で表示されるので、直感的かつ視覚的にもわかり やすく検証ができます。

特に入出力タイミングの解析では、ユーザが与えたタイミング制約とタイミング解析した結果から得られるスラックなどの関係が、Data Path タブなどの数値のみではわかりにくいことがあるので、Data Path タブと同時に Waveform タブを見ることで確認しやすくなります。

3-3-5. Extra Fitter Information タブ

パス・サマリーで選択した行(ノード)におけるフィッタ情報(配置配線情報)を視覚的に表示しています。このタブは、65-nm 以下のプロセスのデバイスで表示されます。

例えば、上部に示された表の 1 がデータ・パスの始点、最末尾がデータ・パスの終点で、共に黒ドットで表示さ れます。その間のルーティングは黒線で表示されます。ただし、このルーティング表示は、実際の配線経路を表示 している訳ではありません。CELL の位置を直線的に結んだものです。なお、Location 項は座標(X, Y)で示され、 デバイスの左下(★マーク)が原点(X1, Y1)です。

4. <u>テクニカル・ビューワの活用</u>

TimeQuest のパス・スラック・レポートの情報を、Quartus II のグラフィカル・ビューワ・ツールと関連付けて閲覧 することができます。数値のみのタイミング解析情報に加えて、視覚的な情報がプラスされることで、ユーザはより 現状を把握することができます。

詳細レポートのパス・サマリーの中で確認したいパスの Slack 付近を指定して、右クリックで現れるプルダウン・メニューから Location Path ⇒ Locate in *** 項目から、希望するビューワを選択します。

Con	nmand Ir	nfo	Summary	of Paths										
	Slack		From Node	To N	ode					Launch Clock				Li
1	-5.723	df	f inst[2]	q[2]		pll:pll ir	nst pl (0002:pl	l insi	t altera_pll:al	tera_pll_i	outclk_v	vire[0]	clock
2	-5.722		Сору					Ctrl+	С	altera_pll:alt	tera_pll_i	outclk_v	vire[0]	clock
3	-5.717		Select All					Ctrl+	Α	altera_pll:al	tera_pll_i	outclk_v	vire[0]	clock
4	-5.690									altera_pll:al	tera_pll_i	outclk_v	vire[0]	clock
L	- C C C C		Undo Sort							Interne all all		المغرب ا	Fo1	ala ala
Path	#1: Se													
Pat	h Summi		Report Wo	rst-Case F	Path			er Informatio	n					
Data	a Arriva		Report Tim	ing										
			Report Tim	ing Closur	e Reco	mmenda	ations			Loca	ation			
1	13		Set False P	ath (betw	een no	odes)							launch	edge
2	⊿ 21		Set Ealse P	ath (betw	een da	ocks)							clock p	ath
1			Contraction			J							source	latenc
2			Set Multicy	cie (betwe	en no	aes)				8			clock_i	n
3			Set Multicy	de (betwe	en do	cks)				F_X15_Y61_	N1		clock_i	n~inpl
4			Evenet							F_X15_Y61_	N1		clock_i	n∼inpı
5		_	Export					_	- 1	ECLKSELECT	X0_Y20	NO	oll_ins	tloll_in
6			Locate Pat	h					•	Locate	in Chip Pl	lanner		
7		15.5	44 0.00	0 RR	10	2	10		RA	Locate	in Techno	ology Ma	p Viewer	
8		15.7	23 0.17	'9 RR	C	ELL	1	1	FRA	Locata	in Door	reo Dreo	ortu Edita	
9		15.7	23 0.00	0 RR	IC	2	1	- I	PLLC	Locate	in Resour	rce Prop	erty Edito	и

4-1. Chip Planner

タイミングを満たさない原因は様々ですが、その 1 つに"配置の問題"があります。それを検証するのに便利な ツールが Chip Planner です。

Chip Planner は、デバイスのリソース(ロジック・エレメントやメモリ・ブロック、DSP ブロック、I/O ピンなど)の使 用状況やデバイス内部のどこに配置しているかをグラフィカルに確認できるビューワです。その機能を活用して、 TimeQuest により得られたタイミングの詳細レポートで指定したデータ・パス間のセル配置関係を確認します。

※ 本資料では、Chip Planner の詳細については割愛します。

4-2. Technology Map Viewer

タイミングを満たさない原因は様々ですが、その 1 つに"回路の実現方法の問題"があります。それを検証するのに便利なツールが Technology Map Viewer です。

Technology Map Viewer は、作成した論理回路がどのような論理ブロックで構成され、接続されているのかをグ ラフィカルに確認できるビューワです。その機能を活用して、TimeQuest により得られたタイミングの詳細レポート で指定したデータ・パス間のセル構成を確認します。

※ 本資料では、Technology Map Viewer の詳細については割愛します。

4-3. Resource Property Editor

Chip Planner や Technology Map Viewer と共に、必要に応じて使用すると便利なツールが Resource Property Editor です。

Resource Property Editor は、ロジックの実装と接続の詳細をデバイスの構造(デバイス・アーキテクチャ)レベル で確認できるグラフィカル・ビューワです。Chip Planner や Technology Map Viewer から、さらにデバイス構造レベ ルの配置情報を得たいときに、各ビューワから Resource Property Editor にクロス・プローブするといった使い方が 主です。

※ 本資料では、Resource Property Editor の詳細については割愛します。

5. タイミング・エラー改善のための手法

タイミング解析した結果、タイミング違反のパスがある場合は、タイミング違反に至っている原因を探ります。タイ ミング・エラーは、主に以下の原因が考えられます。(もちろん、これら以外の要因もあり得ます。)

- ・ データ・パス間の多段ロジック
- ・ 送信側の高ファンアウト信号
- 物理的制約の衝突(配置や配線)
- ・ 厳しいタイミング制約

タイミングの詳細レポートやテクニカル・ビューワなどから、タイミング・エラーの原因を調査して、改善させる必要があります。

・ Timing Optimization Advisor の活用(Tools メニュー \Rightarrow Advisors \Rightarrow Timing Optimization Advisor)

Advisor は、デザインを最適化するための推奨設定を提案してくれる機能です。提案された設定を試す ことで、状況が改善する可能性があります。 A マークは、適用されていない設定であることを表していま す。ユーザは内容を確認して、試してみる価値があるかどうかを判断します。設定によっては、Settings 画 面を開かなくても、Correct the Settings をクリックするだけで簡単に設定を反映させることができます。 マークは、既に適用済みの設定を表しています。Undo をクリックすると、未設定の状態に戻すことが できます。

配置配線オプションの変更(Assignments メニュー ⇒ Settings ⇒ Compiler Settings)

高パフォーマンスになるような配置配線設定や消費電力低減になるような配置配線設定、リソースをなる べく消費しないエリア重視の配置配線設定があります。デフォルトはパフォーマンスとパワー、エリアのバ ランスの取れた設定である Balanced になっています。

Sneci	fy biob-level optimization settings for the Compiler (including integrated synthesis and fitting). These settings contro
the o	ptimization focus and algorithms that will be performed throughout design compilation.
Opt	imization mode
۲	Balanced (Normal flow)
\bigcirc	Performance (High effort - increases runtime)
\bigcirc	Performance (Aggressive - increases runtime and area)
\bigcirc	Power (High effort - increases runtime)
\bigcirc	Power (Aggressive - increases runtime, reduces performance)
\bigcirc	Area (Aggressive - reduces performance)
Pre	vent register optimizations
	Prevent register merging
	Prevent register duplication
	Prevent register retiming

・ デザインの見直し

場合によっては、デザインの見直しで改善するかも知れません。タイミング違反の要因によっては、検討 する必要があるかも知れません。

・ タイミング制約の見直し(本当に正しい制約をしているか?必要以上に厳しい制約になっていないか?)

タイミング制約をもう一度見直して、制約値が厳しすぎることなく最適かどうかを確認してみてください。基本的には、タイミング制約にマージンを持たせる必要はありません。(100MHz で動作するクロックに対して、110MHz のクロックであるといった過剰なタイミング制約与えるなど)

・ デバイスのスピード・グレードを高速デバイスへ変更

デバイスのスピード・グレードの変更が許容できる場合は、試してみると良いかも知れません。

<u> 改版履歴</u>

Revision	年月	概要
1	2015 年 11 月	初版

免責およびご利用上の注意

弊社より資料を入手されましたお客様におかれましては、下記の使用上の注意を一読いただいた上でご使用ください。

- 1. 本資料は非売品です。許可無く転売することや無断複製することを禁じます。
- 2. 本資料は予告なく変更することがあります。
- 本資料の作成には万全を期していますが、万一ご不明な点や誤り、記載漏れなどお気づきの点がありましたら、本資料を入手されました下記代理店までご一報いただければ幸いです。
 株式会社アルティマ ホームページ: http://www.altima.co.jp
 技術情報サイト EDISON: http://www.altima.jp/members/index.cfm
 株式会社エルセナ ホームページ: http://www.elsena.co.jp
 技術情報サイト ETS : http://www.elsena.co.jp/elspear/members/index.cfm
- 4. 本資料で取り扱っている回路、技術、プログラムに関して運用した結果の影響については、責任を負いかねますのであらかじめご了承ください。
- 5. 本資料は製品を利用する際の補助的な資料です。製品をご使用になる際は、各メーカ発行の英語版の資料もあわせてご利用ください。