インテル® Agilex™ FPGA & SoC / インテル® Stratix® 10 FPGA 外部メモリー・インターフェース Example Design Traffic Generator 2.0

MACNICA

株式会社マクニカ アルティマカンパニー

Rev.1.0 2021/10

概要

- ◆ 本資料は、外部メモリー・インターフェースの Example Design に実装される Traffic Generator 2.0 の設定および動作についてまとめています
 - 実機確認手順については、下記をご参照ください
 - <u>インテル® Agilex™ FPGA & SoC 外部メモリー・インターフェース Traffic Generator 2.0</u>

- 本資料の画像は、下記ツールを使用しています
 - 。 インテル® Quartus® Prime 開発ソフトウェア プロ・エディション 21.1

Agenda

- 1. Traffic Generator
- 2. 起動画面
- 3. Instruction Pattern
- 4. Address Pattern
- 5. Data Pattern
- 6. Traffic Preset Mode
- 7. まとめ

Traffic Generator について

- Traffic Generator とは、EMIF IP コアの生成する Example Design 内に実装される、テスト用の回路です
 - 。 テスト・パターン生成、および リード・データ の チェックをおこないます
- Traffic Generator 2.0 を使用することで、ユーザー側からテスト・パターンを設定することができます

Example Design の起動時の動作

- Example Design の起動時の動作は、下記のとおりです
- Traffic Generator のテストが完了後、ユーザー設定によるテストを実施 可能です

Traffic Generator の設定について

● IP コア生成時に、Example Design に実装する Traffic Generator を設定します

* Traffic Generator (Settings only applicable for example design)

 Traffic Generator (settings only applicable for example design) 		
✓ Use configurable Avalon traffic generator 2.0		
✓ Enable default traffic pattern (pattern configured during compile-time)		
✓ Enable user-configured traffic pattern (pattern configured during run-time)		
TG2 default traffic duration:	Short	-
TG2 Configuration Interface Mode:	JTAG	-

項目	設定	説明
Use configurable Avalon traffic generator 2.0	ON	Traffic Generator 2.0 が実装されます。
	OFF	Legacy の Traffic Generator が実装されます。
Enable default traffic pattern (pattern configured during compiletime)	ON	Calibration 後に Traffic Generator のデフォルト設定でのテストが実行されます。
	OFF	テストは実行されず Calibration 完了で停止します。
Enable user-configured traffic pattern (pattern configured during run-time)	ON	Traffic Generator に対してユーザー側からパターン設定等のアクセスが可能になります。
	OFF	OFF にした場合、ユーザー側からのアクセスは無視されます。 (以降で紹介するユーザー側からの設定をおこなうには、ON にしてください)

Traffic Generator 2.0 の起動画面

● 起動時の表示画面

- 起動手順は下記リンクをご参照ください
- 。 <u>インテル[®] Agilex[™] FPGA & SoC 外部メモリー・インターフェース Traffic Generator 2.0</u>

Separate Read and Write settings

- Separate Read and Write settings
 - 。 ライト時と リード時と個別に設定する機能です
- 今回は OFF 設定として、ライトとリードは同じ設定としています

今回はこの設定で動作確認を実施

(参考: ON に設定時の画面)

設定タブ

● 動作設定をおこなうのは下記タブです

- 。 Instruction Pattern タブ
- Address Pattern タブ
- 。 Data Pattern タブ

10

Pass / Fail 判定について

● Pass / Fail は TG Status Report に表示されます

・ ビット毎に表示されます (今回の評価では全て Pass となるため、省略)

© Macnica, Inc.

Instruction タブの設定項目について

項目	説明
Loop Count	設定した一連の動作をループする回数を設定します。 "0" を設定した場合、無限ループとなります。
Burst Length	各アクセスのバースト長を設定します。
Idle Count (write-to-read)	ライト動作からリード動作に切り替える際に挿入する アイドル時間(クロック数)を設定します。 なお本資料では動作波形による説明はございません。
Idle Count (read-to-write)	リード動作からライト動作に切り替える際に挿入するアイドル時間(クロック数)を設定します。 なお本資料では動作波形による説明はございません。
Enable WORM mode	WORM モードの Enable/Disable を設定します。
Write/Read Count	各ライト/リード動作の回数を設定します。 アドレスを変更しておこなう回数となります。
Write/Read Repeat Count	各ライト/リード動作について、同一アドレスに繰り返しアクセスする回数を設定します。

13

Loop Count (1)

● 繰り返し回数を設定します

。 Loop Count = 1 の動作波形

【動作】

- ① addr 0 (⊂ single write (1 burst)
- 2 addr 0 (\subset single read (1 burst)
- ①② を Loop Count 数 (=1) 実行して停止

Loop Count (2)

● 繰り返し回数を設定します

。 Loop Count = 2 の動作波形

0.

amm readdatavalid

Loop Count (3)

● 繰り返し回数を設定します

Loop Count = 4 の動作波形

Instruction Pattern

General Settings

Sequential Address Increment: 1

Start Address: 0x0000000000000000

Type

Address Mode: Sequential

Address Pattern Data Patt

Alias

amm_ready

amm_write

amm_read

Start Each Loop With The Same Address: False

Loop Count (4): Loop Count = 0 の設定

Loop Count = 0 の場合、連続動作となります

START TG の表示が STOP TG ... に 切り替わります

Instruction Pattern Address Pattern

General Settings

Loop Count:

Burst Length:

Idle Count (write-to-read):

Idle Count (read-to-write):

Enable WORM mode:
False
Write/Read Count:

Write/Read Repeat Count:

1

停止する場合、ク リックします。 START TG の表示に 切り替わります

Burst Length (1)

● Burst 長を設定します

。 Burst Length = 4 の動作波形 (Loop Count = 1)

Burst Length (2)

Burst 長を設定します

Burst Length = 4 の動作波形 (Loop Count = 3)

Enable WORM mode

- WORM (Write-Once-Read-Many) Mode
 - リードデータが不一致となった場合、同一アドレスを再度リードします
 - 両方のリードデータが同じ場合、ライト時の問題の可能性が高い
 - 両方のリードデータが異なる場合、リード時の問題の可能性が高い
 - 。 リードデータが期待値と一致の場合は再リードは実行されません

①② を Loop Count 数 (=4) 実行して停止

リードデータが期待値と一致したため、各リードは一回で完了

Write/Read Count (1)

- ライト/リードそれぞれの実行数を設定します
 - 。 Write/Read Count = 3 の動作波形 (Loop Count = 1, Burst Length = 1)

© Macnica, Inc.

Write/Read Count (2)

- ライト/リードそれぞれの実行数を設定します
 - 。 Write/Read Count = 8 の動作波形 (Loop Count = 1, Burst Length = 1)

22

Write/Read Repeat Count (1)

● 同一アドレスにアクセスする回数を設定します

。 Write/Read Repeat Count = 3 の動作波形 (Loop Count = 1, Burst Length = 1)

- ① addr 0 に single write を 3 回実行 (同一 address)
- ② addr 0 に single read を 3 回業行 (同一 address)
- ①② を Loop Count 数 (=1) 実行して停止

Write/Read Repeat Count (2)

- 同一アドレスにアクセスする回数を設定します
 - Write/Read Repeat Count = 3 の動作波形
 - (Loop Count = 1, Burst Length = 1, Write/Read Count = 4)

00000004h

rd- rd-

3-2 3-3 4-1

© Macnica, Inc.

Address Pattern の設定項目について

項目	説明
Start Each Loop with The Same Address	True 設定の場合、各ループの開始アドレスを同一にします。
Sequential Address Increment	Address Mode を Sequential にした場合のインクリメント・ステップを設定します。
Address Mode	Address Mode を設定します。 ・Sequential ・Random ・Random Sequential
Start Address	開始アドレスを設定します。
Num Rand-Seq Address (Random Sequential Mode)	Address Mode を Random-Sequential にした場合の、 Sequential 動作を実行する回数を設定します。

© Macnica, Inc.

Address Mode: Sequential

● Address 値を インクリメントします

インクリメント動作のステップ値を設定します

Address Mode: Random

● Address 値を Random に変更します

Address Mode: Random-Sequential

- Address 値を Random と Sequential の組み合わせで変更します
 - 。 Sequential のときのステップ値、回数を設定します

Select Each Loop With The Same Address

- 各ループの開始アドレスを Start Address 設定値とします
 - Select Each Loop With The Same Address = True

Select Each Loop With The Same Address

- Select Each Loop With The Same Address = True
- Start Address = 0x0
- Loop Count = 4, Burst Length= 1, Write/Read Count = 3

MACNICA

3

Select Each Loop With The Same Address

- Select Each Loop With The Same Address = True
- Start Address = 0x100
- Loop Count = 16, Burst Length= 1, Write/Read Count = 3

MACNICA

Data Pattern MACA

Data Pattern タブについて

項目	説明
Data Generator ID	8 バースト動作設定時の ビートを指定します。 0-7 の間で選択して、それぞれのデータを設定することになります。 【例】 ID 0:8 バーストの最初のビートのデータ ID 1:8 バーストの 2 個目のビートのデータ ID 7:8 バーストの最後のビートのデータ
Per-Pin-Pattern- Generator Mode	各ピン毎のパターンを設定します。 (詳細は後述)
Data Seed	各データの Seed 値を設定します

Data Pattern について

- DQ0 DQ7 について、8 バーストのパターンを設定します
 - DQ0、DQ1、... DQ7 について、それぞれ個別に設定します
 - DQ0 の 8bit を設定 ⇒ DQ0 が 8 バーストで出力するパターン
 - DQ1 の 8bit を設定 ⇒ DQ1 が 8 バーストで出力するパターン
 - DQ2 の 8bit を設定 ⇒ DQ2 が 8 バーストで出力するパターン
- DQ0 DQ7 以降は、この 8bit 単位の繰り返しとなります
 - 。 DQ0 と DQ8, DQ16, DQ24, ... は同じ
 - 。 DQ1 と DQ9, DQ17, DQ25, ... は同じ

Per-Pin-Pattern-Generator-Mode

Per-Pin-Pattern-Generator-Mode、 および Data Seed は、 各 Data Generator ID (0 - 7) につい て個別に設定します

Mode	説明
Fixed	Data Seed の LSB 8bit を固定値として出力します。 【例】 Data Seed = $0x76543210$ の場合、 $0x10 \Rightarrow 0x10 \Rightarrow 0x10 \Rightarrow 0x10 \Rightarrow$
PRBS 7	Data Seed の LSB 8bit を入力 seed として PRBS パターンを 出力します。 多項式は、X ⁷ + X ⁶ + 1
PRBS 15	Data Seed の LSB 16bit を入力 seed として PRBS パターンを 出力します。 多項式は、X ¹⁵ + X ¹⁴ + 1
PRBS 31	Data Seed 32bit を入力 seed として PRBS パターンを出力します。 多項式は、X ³¹ + X ²⁸ + 1
Rotating (custom)	Data Seed 32bit を、8bit ずつ LSB 側からを順に出力します 【例】 Data Seed = 0x76543210 の場合、 0x10 ⇒ 0x32 ⇒ 0x54 ⇒ 0x76 ⇒ 0x10 ⇒

Data Pattern 設定例 (1)


```
Data Generator ID: 0: DQ[0] 0x00000001 Constant Bit Per Pin Data Generator ID: 1: DQ[1] 0x00000001 Constant Bit Per Pin Data Generator ID: 2: DQ[2] 0x00000001 Constant Bit Per Pin Data Generator ID: 3: DQ[3] 0x00000001 Constant Bit Per Pin Data Generator ID: 4: DQ[4] 0x00000001 Constant Bit Per Pin Data Generator ID: 5: DQ[5] 0x00000001 Constant Bit Per Pin Data Generator ID: 6: DQ[6] 0x00000001 Constant Bit Per Pin Data Generator ID: 7: DQ[7] 0x00000001 Constant Bit Per Pin
```

```
・8 バーストの 1 回目 : DQ[7:0] = 8'hFF (= DQ[15:8] = DQ[23:16] = DQ[31:24] ... DQ[71:64] )
・8 バーストの 2 回目 : DQ[7:0] = 8'h00 (= DQ[15:8] = DQ[23:16] = DQ[31:24] ... DQ[71:64] )
・8 バーストの 3-7 回目 : DQ[7:0] = 8'h00 (= DQ[15:8] = DQ[23:16] = DQ[31:24] ... DQ[71:64] )
DQ = 72bit なので 9 個ずつ配置して、
amm_writedata[575:0] = {{9{8'h00} , {9{8'h00} ,
```


MACNICA

Data Pattern 設定例 (2)


```
Data Generator ID: 0: DQ[0] 0x00000002 Constant Bit Per Pin Data Generator ID: 1: DQ[1] 0x00000002 Constant Bit Per Pin Data Generator ID: 2: DQ[2] 0x00000002 Constant Bit Per Pin Data Generator ID: 3: DQ[3] 0x00000002 Constant Bit Per Pin Data Generator ID: 4: DQ[4] 0x00000002 Constant Bit Per Pin Data Generator ID: 5: DQ[5] 0x00000002 Constant Bit Per Pin Data Generator ID: 6: DQ[6] 0x00000002 Constant Bit Per Pin Data Generator ID: 7: DQ[7] 0x00000002 Constant Bit Per Pin
```

```
・8 バーストの 1 回目 : DQ[7:0] = 8'h00 (= DQ[15:8] = DQ[23:16] = DQ[31:24] ... DQ[71:64] )
・8 バーストの 2 回目 : DQ[7:0] = 8'hFF (= DQ[15:8] = DQ[23:16] = DQ[31:24] ... DQ[71:64] )
・8 バーストの 3-7 回目 : DQ[7:0] = 8'h00 (= DQ[15:8] = DQ[23:16] = DQ[31:24] ... DQ[71:64] )
DQ = 72bit なので 9 個ずつ配置して、
amm_writedata[575:0] = {{9{8'h00} , {9{8'h00} ,
```


MACNICA

Data Pattern 設定例 (3)

```
Instruction Pattern Address Pattern Data Pattern T

Data Settings

Data Generator ID: 0 ▼

Per-Pin-Pattern-Generator Mode: Constant Bit Per Pin ▼

Data Seed: 0x000000ff
```

```
Data Generator ID: 0: DQ[0] 0x000000FF Constant Bit Per Pin
Data Generator ID: 1: DQ[1] 0x000000FF Constant Bit Per Pin
Data Generator ID: 2: DQ[2] 0x00000000 Constant Bit Per Pin
Data Generator ID: 3: DQ[3] 0x00000000 Constant Bit Per Pin
Data Generator ID: 4: DQ[4] 0x00000000 Constant Bit Per Pin
Data Generator ID: 5: DQ[5] 0x00000000 Constant Bit Per Pin
Data Generator ID: 6: DQ[6] 0x00000000 Constant Bit Per Pin
Data Generator ID: 7: DQ[7] 0x00000000 Constant Bit Per Pin
```

```
・8 バーストの 1 回目 : DQ[7:0] = 8'h03 (= DQ[15:8] = DQ[23:16] = DQ[31:24] ... DQ[71:64] )
・8 バーストの 2 回目 : DQ[7:0] = 8'h03 (= DQ[15:8] = DQ[23:16] = DQ[31:24] ... DQ[71:64] )
・8 バーストの 3-7 回目: DQ[7:0] = 8'h03 (= DQ[15:8] = DQ[23:16] = DQ[31:24] ... DQ[71:64] )
DQ = 72bit なので 9 個ずつ配置して、
amm_writedata[575:0] = {{9{8'h03}, {9{8'h03}, {9{
```


Data Pattern 設定例 (4)

```
Instruction Pattern Address Pattern Data Pattern T

Data Settings

Data Generator ID: 5 ▼

Per-Pin-Pattern-Generator Mode: Constant Bit Per Pin ▼

Data Seed: Ox000000FF
```

```
Data Generator ID: 0: DQ[0] 0x000000FF Constant Bit Per Pin
Data Generator ID: 1: DQ[1] 0x00000000 Constant Bit Per Pin
Data Generator ID: 2: DQ[2] 0x00000000 Constant Bit Per Pin
Data Generator ID: 3: DQ[3] 0x00000000 Constant Bit Per Pin
Data Generator ID: 4: DQ[4] 0x00000000 Constant Bit Per Pin
Data Generator ID: 5: DQ[5] 0x000000FF Constant Bit Per Pin
Data Generator ID: 6: DQ[6] 0x00000000 Constant Bit Per Pin
Data Generator ID: 7: DQ[7] 0x00000000 Constant Bit Per Pin
```

```
・8 バーストの 1 回目 : DQ[7:0] = 8'h21 (= DQ[15:8] = DQ[23:16] = DQ[31:24] ... DQ[71:64] )
・8 バーストの 2 回目 : DQ[7:0] = 8'h21 (= DQ[15:8] = DQ[23:16] = DQ[31:24] ... DQ[71:64] )
・8 バーストの 3-7 回目: DQ[7:0] = 8'h21 (= DQ[15:8] = DQ[23:16] = DQ[31:24] ... DQ[71:64] )
DQ = 72bit なので 9 個ずつ配置して、
amm_writedata[575:0] = {{9{8'h21}, {9{8'h21}, {9{
```


Traffic Preset Mode の選択

- Traffic Generator 2.0 では Preset Mode が選択可能です
 - 。 プルダウンで選択可能です

Preset について

項目	説明
Default	デフォルト・パターンが設定されます。 ループ回数 1 、 開始アドレス 0 などとなっています。 (本資料では設定画面の説明はございません) データは 0x5a5a5a5a となります。
Walking 1s	各 DQS グループ内の DQ が 1つだけ 1 になり、それが 8 バースト動作中に各 DQ でシフトしていくパターンです。
Walking 0s	各 DQS グループ内の DQ が 1 つだけ 0 になり、それが 8 バースト動作中に各 DQ でシフトしていくパターンです。
Read & Write Entire Memory	全アドレス領域に、Sequential mode で all '1' を設定する パターンです。 バースト長は 64 に設定されます。

Traffic Preset Mode (1): Walking 1's

● Walking 1's は、DQ[7:0] で 1 が シフトしていくパターンです

8 バーストの 1 回目: DQ[7:0] = 8'h01, 8 バーストの 2 回目: DQ[7:0] = 8'h02, {9{8'h80}} {9{8'h40}} {9{8'h20}} {9{8'h10}} {9{8'h10}} {9{8'h08}} {9{8'h04}} {9{8'h02}} {9{8'h02}}

Traffic Preset Mode (2): walking 0's

● Walking 0's は、DQ[7:0] で 0 が シフトしていくパターンです

Data Generator ID: 0: DQ[0] 0xFEFEFEFE
Data Generator ID: 1: DQ[1] 0xFDFDFDFD
Data Generator ID: 2: DQ[2] 0xFBFBFBFB
Data Generator ID: 3: DQ[3] 0xF7F7F7F7
Data Generator ID: 4: DQ[4] 0xEFEFEFEF
Data Generator ID: 5: DQ[5] 0xDFDFDFDF
Data Generator ID: 6: DQ[6] 0xBFBFBFBF
Data Generator ID: 7: DQ[7] 0x7F7F7F7F

8 バーストの 1 回目: DQ[7:0] = 8'hFE, 8 バーストの 2 回目: DQ[7:0] = 8'hFD,

{9{8'h7F}} {9{8'hBF}} {9{8'hDF}} {9{8'hEF}} {9{8'hF7}} {9{8'hFB}} {9{8'hFD}} {9{8'hFE}} Name 14 Alias Type amm_ready 0000005h 0000006h 0000007h 0000008h 00000091 amm_address[27:0] amm_write amm_writedata[575:0] .0 amm read amm_burstcount[6:0] amm_readdata[575:0] amm readdatavalid .0

Traffic Preset Mode (3): Read & Write Entire Memory

- Read & Write Entire Memory は、全領域に FFh を ライト/リードします
 - 。 64 バーストで ループして全領域にアクセスします

{72{8'hFF}} -32 -16 32 128 176 192 208 224 240 256 272 288 320 Alias ...0 amm ready 000000Ah 0000000h amm_address[27:0] ...0 amm_write amm_writedata[575:0] ...0 amm_burstcount[6:0] amm_readdata[575:0] ...0 amm_readdatavalid

まとめ MACNICA

まとめ

● Traffic Generator 2.0 では、ユーザー側でテスト・パターンの設定が可能です

● Traffic Preset Mode も用意されています

● テスト結果について、ビット毎に表示され、期待値と異なる場合エラー表示となります

改版履歴

Revision	年月	概要
1.0	2021年10月	初版作成

弊社より資料を入手されたお客様におかれましては、下記の使用上の注意を一読いただいた上でご使用ください。

- 1. 本資料は非売品です。許可なく転売することや無断複製することを禁じます。
- 2. 本資料は予告なく変更することがあります。
- 3. 本資料の作成には万全を期していますが、万一ご不明な点や誤り、記載漏れなどお気づきの点がありましたら、弊社までご一報いただければ幸いです。
- 4. 本資料で取り扱っている回路、技術、プログラムに関して運用した結果の影響については、責任を負いかねますのであらかじめご了承ください。
- 5. 本資料は製品を利用する際の補助的な資料です。製品をご使用になる場合は、英語版の資料もあわせてご利用ください。

MACNICA